Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 24 задачи
Версия для печати
Убрать все задачи

Автор: Анджанс А.

На шахматной доске выбрана клетка. Сумма квадратов расстояний от её центра до центров всех чёрных клеток обозначена через a, а до центров всех белых клеток – через b. Докажите, что  a = b.

Вниз   Решение


В треугольник с периметром 2p вписана окружность. К этой окружности проведена касательная, параллельная стороне треугольника. Найдите наибольшую возможную длину отрезка этой касательной, заключённого внутри треугольника.

ВверхВниз   Решение


Найдите производящие функции последовательностей многочленов Чебышева первого и второго рода:

Определения многочленов Чебышева можно найти в справочнике.

ВверхВниз   Решение


а) В трёхзначном числе зачеркнули первую цифру слева, затем полученное двузначное число умножили на 7 и получили исходное трёхзначное число. Найдите такое число.
б) В трёхзначном числе зачеркнули среднюю цифру и получили число в 6 раз меньше исходного. Найдите такое трёхзначное число.

ВверхВниз   Решение


На прямой даны четыре точки A, B, C, D в указанном порядке. Постройте точку M, из которой отрезки AB, BC, CD видны под равными углами.

ВверхВниз   Решение


Найдите расстояние между точками касания окружностей, вписанных в треугольники ABC и CDA, со стороной AC, если

а) AB = 5, BC = 7, CD = DA;

б) AB = 7, BC = CD, DA = 9.

ВверхВниз   Решение


На стороне BC равностороннего треугольника ABC взята точка M, а на продолжении стороны AC за точку C – точка N, причём  AM = MN.
Докажите, что  BM = CN.

ВверхВниз   Решение


12 команд сыграли турнир по волейболу в один круг. Две команды одержали ровно по 7 побед.
Доказать, что найдутся такие команды А, В, С, что А выиграла у В, В выиграла у С, а С – у А.

ВверхВниз   Решение


Постройте вписанно-описанный четырёхугольник по двум противоположным вершинам и центру вписанной окружности.

ВверхВниз   Решение


Автор: Фольклор

Доказать, что среди 18 последовательных трёхзначных чисел найдётся хотя бы одно, которое делится на сумму своих цифр.

ВверхВниз   Решение


Докажите, что
а)  S3 $ \leq$ ($ \sqrt{3}$/4)3(abc)2;
б)  3hahbhc $ \leq$ 43$ \sqrt{S}$ $ \leq$ 3rarbrc.

ВверхВниз   Решение


С помощью циркуля и линейки постройте окружность, касающуюся сторон данного угла, причём одной из них — в данной точке.

ВверхВниз   Решение


Найдите первые 99 знаков после запятой в разложении числа   .

ВверхВниз   Решение


На сторонах треугольника ABC взяты точки A1, B1 и C1 так, что  AB1 : B1C = cn : an,  BC1 : C1A = an : bn  и  CA1 : A1B = bn : cn  (a, b, c – длины сторон треугольника). Описанная окружность треугольника A1B1C1 высекает на сторонах треугольника ABC отрезки длиной ±x, ±y и ±z (знаки выбираются в соответствии с ориентацией треугольника). Докажите, что  

ВверхВниз   Решение


Докажите, что если  α < β  и  αβ ≠ 0,   то  Sα(x) ≤ Sβ(x).
Определение средних степенных Sα(x) можно посмотреть в справочнике.

ВверхВниз   Решение


На сторонах BC, CA и AB треугольника ABC взяты произвольные точки A1, B1 и C1. Пусть  a = SAB1C1, b = SA1BC1, c = SA1B1C и  u = SA1B1C1. Докажите, что

u3 + (a + b + c)u2 $\displaystyle \geq$ 4abc.


ВверхВниз   Решение


В равносторонний треугольник со стороной a вписана окружность. К окружности проведена касательная так, что её отрезок внутри треугольника равен b. Найдите площадь треугольника, отсеченного этой касательной.

ВверхВниз   Решение


В угол вписаны две окружности ω и Ω. Прямая l пересекает стороны угла в точках A и F, окружность ω в точках B и C, окружность Ω в точках D и E (порядок точек на прямой – A, B, C, D, E, F). Пусть  BC = DE.  Докажите, что  AB = EF.

ВверхВниз   Решение


Определить четырёхзначное число, если деление этого числа на однозначное производится по следующей схеме:

  × × × ×  ×  
  × ×      ×××  
      × ×    
      × ×    
             

а деление этого же числа на другое однозначное производится по такой схеме:

  × × × ×  ×  
    ×      ×××  
    × ×      
      ×      
      × ×    
      × ×    
             

ВверхВниз   Решение


На сфере радиуса 9 расположены точки L , L1 , M , M1 , N и N1 . Отрезки LL1 , MM1 и NN1 попарно перпендикулярны и пересекаются в точке A , отстоящей от центра сферы на расстоянии . В каком отношении точка A делит отрезок NN1 , если известно, что LL1=16 , MM1=14 ?

ВверхВниз   Решение


Докажите, что:
  а)  

  б)  

ВверхВниз   Решение


Докажите, что если радиус вневписанной окружности равен полупериметру треугольника, то этот треугольник — прямоугольный.

ВверхВниз   Решение


Имеются две одинаковых шестеренки по 14 зубьев на общей оси. Их совместили и выбили четыре пары зубьев.
Доказать, что шестеренки можно повернуть так, что они образуют полноценную шестеренку (без дырок).

ВверхВниз   Решение


Придумайте какой-нибудь способ достроить треугольник Паскаля вверх.

Вверх   Решение

Задачи

Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 1008]      



Задача 60410

Тема:   [ Треугольник Паскаля и бином Ньютона ]
Сложность: 3+
Классы: 9,10,11

Придумайте какой-нибудь способ достроить треугольник Паскаля вверх.

Прислать комментарий     Решение

Задача 60417

 [Биномиальная система счисления]
Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Системы счисления (прочее) ]
Сложность: 3+
Классы: 9,10

Покажите, что любое натуральное число n может быть представлено в виде     где x, y, z – такие целые числа, что  0 ≤ x < y < z,  либо  0 = x = y < z.

Прислать комментарий     Решение

Задача 60420

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Числовые последовательности (прочее) ]
[ Линейные неравенства и системы неравенств ]
Сложность: 3+
Классы: 10,11

Какое слагаемое в разложении  (1 + )100  по формуле бинома Ньютона будет наибольшим?

Прислать комментарий     Решение

Задача 60449

 [Маршруты ладьи]
Темы:   [ Числа Каталана ]
[ Мощность множества. Взаимно-однозначные отображения ]
Сложность: 3+
Классы: 8,9,10,11

Рассмотрим шахматную доску n×n. Требуется провести ладью из левого нижнего угла в правый верхний. Двигаться можно только вверх и вправо, не заходя при этом на клетки главной диагонали и ниже нее. (Ладья оказывается на главной диагонали только в начальный и в конечный моменты времени.) Сколько у ладьи существует таких маршрутов?

Прислать комментарий     Решение

Задача 60450

 [Очередь в кассу]
Темы:   [ Числа Каталана ]
[ Мощность множества. Взаимно-однозначные отображения ]
Сложность: 3+
Классы: 8,9,10,11

Билеты стоят 50 центов, и 2n покупателей стоят в очереди в кассу. Половина из них имеет по одному доллару, остальные – по 50 центов. Кассир начинает продажу билетов, не имея денег. Сколько существует различных порядков в очереди, таких, что кассир всегда может дать сдачу?

Прислать комментарий     Решение

Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 1008]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .