ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи
В правильной четырёхугольной пирамиде SABCD ( S – вершина)
сторона основания равна 4
Основанием пирамиды служит правильный шестиугольник ABCDEF , а её
боковое ребро SA перпендикулярно плоскости основания. Расстояния от
точек B и C до прямой SD равны соответственно
Дана геометрическая прогрессия, знаменатель которой — целое число (не равное 0 и -1). Докажите, что сумма любого числа произвольно выбранных её членов не может равняться никакому члену этой прогрессии. Докажите, что
cos 2 В семье шестеро детей. Пятеро из них соответственно на 2, 6, 8, 12 и 14 лет старше младшего, причём возраст каждого ребенка – простое число. Доказать, что существует бесконечно много таких пар (a, b) натуральных чисел, что a² + 1 делится на b, а b² + 1 делится на a. Из медиан треугольника с углами
Поместить в полый куб с ребром a три цилиндра диаметра
Дана последовательность целых чисел, построенная следующим образом: a1 — произвольное трёхзначное число, a2 — сумма квадратов его цифр, a3 — сумма квадратов цифр числа a2 и т.д. Докажите, что в последовательности a1, a2, a3, ...обязательно встретится либо 1, либо 4. Два человека A и B должны попасть как можно скорее из пункта M в пункт N, расположенный в 15 км от M. Пешком они могут передвигаться со скоростью 6 км/ч. Кроме того, в их распоряжении есть велосипед, на котором можно ехать со скоростью 15 км/ч. A отправляется в путь пешком, а B едет на велосипеде до встречи с пешеходом C, идущим из N и M. Дальше B идёт пешком, а C едет на велосипеде до встречи с A и передаёт ему велосипед, на котором тот и приезжает в N. Когда должен выйти из N пешеход C, чтобы время, затраченное A и B на дорогу в N, было наименьшим? (C идёт пешком с той же скоростью, что A и B; время, затраченное на дорогу, считается от момента выхода A и B из M до момента прибытия последнего из них в N.) Из точки C проведены касательные CA и CB к окружности O. Из произвольной точки N окружности опущены перпендикуляры ND, NE, NF соответственно на прямые A, CA и CB. Докажите, что ND есть среднее геометрическое чисел NE и NF. Докажите, что: б) Даны числа 1, 2, 3, ..., 1000. Найдите наибольшее число m, обладающее таким свойством: какие бы m из данных чисел ни вычеркнуть, среди оставшихся 1000 – m чисел найдутся два, из которых одно делится на другое. Вписанная окружность касается сторон треугольника ABC
в точках A1, B1 и C1. Докажите, что треугольник A1B1C1
остроугольный.
Докажите, что если p – простое число и 1 ≤ k ≤ p – 1, то Из двухсот чисел: 1, 2, 3, 4, 5, 6, 7, ..., 199, 200 произвольно выбрали сто
одно число. Докажите, что ни при каком целом A многочлен 3x2n + Axn + 2 не делится на многочлен 2x2m + Axm + 3. 99 прямых разбивают плоскость на n частей. Найдите все возможные значения n, меньшие 199. В равнобедренном треугольнике ABC ∠ABC = 20°. На равных сторонах CB и AB взяты соответственно точки P и Q так, что ∠PAC = 50° и ∠QCA = 60°. Петров забронировал квартиру в доме-новостройке, в котором пять одинаковых подъездов. Изначально подъезды нумеровались слева направо, и квартира Петрова имела номер 636. Потом застройщик поменял нумерацию на противоположную (справа налево, см. рисунок). Тогда квартира Петрова стала иметь номер 242. Сколько квартир в доме? (Порядок нумерации квартир внутри подъезда не изменялся.) p – простое число. Для каких чисел a решением сравнения ax ≡ 1 (mod p) будет само число a? |
Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 201]
Докажите, что если p – простое число и 1 ≤ k ≤ p – 1, то
p – простое число. Для каких чисел a решением сравнения ax ≡ 1 (mod p) будет само число a?
Петров забронировал квартиру в доме-новостройке, в котором пять одинаковых подъездов. Изначально подъезды нумеровались слева направо, и квартира Петрова имела номер 636. Потом застройщик поменял нумерацию на противоположную (справа налево, см. рисунок). Тогда квартира Петрова стала иметь номер 242. Сколько квартир в доме? (Порядок нумерации квартир внутри подъезда не изменялся.)
В семье шестеро детей. Пятеро из них соответственно на 2, 6, 8, 12 и 14 лет старше младшего, причём возраст каждого ребенка – простое число.
Найти все такие тройки простых чисел x, y, z, что 19x − yz = 1995.
Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 201]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке