ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

Имеется 30 человек, некоторые из них знакомы. Доказать, что число человек, имеющих нечётное число знакомых, чётно.

Вниз   Решение


Существует ли выпуклый многогранник, имеющий 12 рёбер, которые соответственно равны и параллельны 12 диагоналям граней куба?

ВверхВниз   Решение


Автор: Замков В.

Витя выложил из карточек с цифрами пример на сложение и затем поменял местами две карточки. Как видите, равенство нарушилось. Какие карточки переставил Витя?

ВверхВниз   Решение


Пусть AE и CD – биссектрисы треугольника ABC,  ∠BED = 2∠AED  и  ∠BDE = 2∠EDC.  Докажите, что треугольник ABC – равнобедренный.

ВверхВниз   Решение


Решите уравнение

arcsin$\displaystyle {\dfrac{x^2-8}{8}}$ = 2 arcsin$\displaystyle {\dfrac{x}{4}}$ - $\displaystyle {\dfrac{\pi}{2}}$.


ВверхВниз   Решение


В воздушном пространстве находятся облака. Оказалось, что пространство можно разбить десятью плоскостями на части так, чтобы в каждой из частей находилось не более одного облака. Через какое наибольшее число облаков мог пролететь самолет, придерживаясь прямолинейного курса?

ВверхВниз   Решение


Докажите, что числа Фибоначчи {Fn} удовлетворяют соотношению

arcctg F2n - arcctg F2n + 2 = arcctg F2n + 1. (8.2)

Получите отсюда равенство

arcctg 2 + arcctg 5 + arcctg 13 +...+ arcctg F2n + 1 +...= $\displaystyle {\dfrac{\pi}{4}}$.


ВверхВниз   Решение


Автор: Фольклор

На плоскости даны два равных многоугольника F и F'. Известно, что все вершины многоугольника F принадлежат F' (могут лежать внутри него или на границе). Верно ли, что все вершины этих многоугольников совпадают?

ВверхВниз   Решение


Квадрат ABCD вращается вокруг своего неподвижного центра. Найдите геометрическое место середин отрезков PQ, где P — основание перпендикуляра, опущенного из точки D на неподвижную прямую l, а Q — середина стороны AB.

ВверхВниз   Решение


Докажите равенство:

4arctg $\displaystyle {\textstyle\frac{1}{5}}$ - arctg $\displaystyle {\textstyle\frac{1}{239}}$ = $\displaystyle {\frac{\pi}{4}}$.


ВверхВниз   Решение


Вписанная окружность треугольника ABC касается сторон BC, CA и AB в точках A', B' и C'. Известно, что  AA' = BB' = CC'.
Обязательно ли треугольник ABC правильный?

ВверхВниз   Решение


n рыцарей из двух враждующих стран сидят за круглым столом. Число пар соседей-друзей равно числу пар соседей-врагов.
Доказать, что n делится на 4.

ВверхВниз   Решение


Дана квадратная сетка на плоскости и треугольник с вершинами в узлах сетки. Докажите, что тангенс любого угла в треугольнике — число рациональное.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 49]      



Задача 58192

Темы:   [ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Четность и нечетность ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Выпуклые многоугольники ]
Сложность: 3-
Классы: 8,9

Докажите, что если вершины выпуклого n-угольника лежат в узлах клетчатой бумаги, а внутри и на его сторонах других узлов нет, то  n ≤ 4.

Прислать комментарий     Решение

Задача 79344

Темы:   [ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Четность и нечетность ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Выпуклые тела ]
[ Правило произведения ]
Сложность: 3
Классы: 10,11

В пространстве расположен выпуклый многогранник, все вершины которого находятся в целых точках. Других целых точек внутри, на гранях и на рёбрах нет. (Целой называется точка, все три координаты которой – целые числа.) Доказать, что число вершин многогранника не превосходит восьми.

Прислать комментарий     Решение

Задача 116281

Темы:   [ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 10,11

В пространстве с декартовой системой координат дан прямоугольный параллелепипед, вершины которого имеют целочисленные координаты. Его объём равен 2011. Докажите, что рёбра параллелепипеда параллельны координатным осям.

Прислать комментарий     Решение

Задача 60866

Темы:   [ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Рациональные и иррациональные числа ]
[ Тригонометрия (прочее) ]
Сложность: 3+
Классы: 9,10,11

Дана квадратная сетка на плоскости и треугольник с вершинами в узлах сетки. Докажите, что тангенс любого угла в треугольнике — число рациональное.

Прислать комментарий     Решение

Задача 64316

Темы:   [ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 6,7

Квадрат с вершинами в узлах сетки и сторонами длиной 2009, идущими по линиям сетки, разрезали по линиям сетки на несколько прямоугольников.
Докажите, что среди них есть хотя бы один прямоугольник, периметр которого делится на 4.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 49]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .