|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Имеется 30 человек, некоторые из них знакомы. Доказать, что число человек, имеющих нечётное число знакомых, чётно. Существует ли выпуклый многогранник, имеющий 12 рёбер, которые соответственно равны и параллельны 12 диагоналям граней куба? Витя выложил из карточек с цифрами пример на сложение и затем поменял местами две карточки. Как видите, равенство нарушилось. Какие карточки переставил Витя?
Пусть AE и CD – биссектрисы треугольника ABC, ∠BED = 2∠AED и ∠BDE = 2∠EDC. Докажите, что треугольник ABC – равнобедренный. Решите уравнение
arcsin
В воздушном пространстве находятся облака. Оказалось, что пространство можно разбить десятью плоскостями на части так, чтобы в каждой из частей находилось не более одного облака. Через какое наибольшее число облаков мог пролететь самолет, придерживаясь прямолинейного курса? Докажите, что числа Фибоначчи {Fn} удовлетворяют соотношению Получите отсюда равенство
arcctg 2 + arcctg 5 + arcctg 13 +...+ arcctg F2n + 1 +...=
На плоскости даны два равных многоугольника F и F'. Известно, что все вершины многоугольника F принадлежат F' (могут лежать внутри него или на границе). Верно ли, что все вершины этих многоугольников совпадают? Квадрат ABCD вращается вокруг своего неподвижного центра. Найдите геометрическое место середин отрезков PQ, где P — основание перпендикуляра, опущенного из точки D на неподвижную прямую l, а Q — середина стороны AB. Докажите равенство:
4arctg
Вписанная окружность треугольника ABC касается сторон BC, CA и AB в точках A', B' и C'. Известно, что AA' = BB' = CC'. n рыцарей из двух враждующих стран сидят за круглым столом. Число пар соседей-друзей равно числу пар соседей-врагов. Дана квадратная сетка на плоскости и треугольник с вершинами в узлах сетки. Докажите, что тангенс любого угла в треугольнике — число рациональное. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 49]
Докажите, что если вершины выпуклого n-угольника лежат в узлах клетчатой бумаги, а внутри и на его сторонах других узлов нет, то n ≤ 4.
В пространстве расположен выпуклый многогранник, все вершины которого находятся в целых точках. Других целых точек внутри, на гранях и на рёбрах нет. (Целой называется точка, все три координаты которой – целые числа.) Доказать, что число вершин многогранника не превосходит восьми.
В пространстве с декартовой системой координат дан прямоугольный параллелепипед, вершины которого имеют целочисленные координаты. Его объём равен 2011. Докажите, что рёбра параллелепипеда параллельны координатным осям.
Квадрат с вершинами в узлах сетки и сторонами длиной 2009, идущими по линиям сетки, разрезали по линиям сетки на несколько прямоугольников.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 49] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|