ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите неравенства:
  а)   n(x1 + ... + xn) ≥ ( + ... +
  б)   + ... + ;
  в)  

  г)     (неравенство Минковского).
  Значения переменных считаются положительными.

   Решение

Задачи

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 92]      



Задача 66199

Темы:   [ Многочлены (прочее) ]
[ Уравнения высших степеней (прочее) ]
[ Производная и экстремумы ]
[ Четность и нечетность ]
Сложность: 4-
Классы: 9,10,11

Пусть  f(x) – некоторый многочлен ненулевой степени.
Может ли оказаться, что уравнение  f(x) = a  при любом значении a имеет чётное число решений?

Прислать комментарий     Решение

Задача 109617

Темы:   [ Задачи на движение ]
[ Монотонность, ограниченность ]
[ Возрастание и убывание. Исследование функций ]
[ Подсчет двумя способами ]
Сложность: 4-
Классы: 9,10,11

Несколько путников движутся с постоянными скоростями по прямолинейной дороге. Известно, что в течение некоторого периода времени сумма попарных расстояний между ними монотонно уменьшалась. Докажите, что в течение того же периода сумма расстояний от некоторого путника до всех остальных тоже монотонно уменьшалась.

Прислать комментарий     Решение

Задача 116624

Темы:   [ Многочлены (прочее) ]
[ Производная (прочее) ]
[ Выпуклость и вогнутость (прочее) ]
Сложность: 4-
Классы: 9,10,11

Автор: Фольклор

Существуют ли такие значения a и b, при которых уравнение   х4 – 4х3 + 6х² + aх + b = 0  имеет четыре различных действительных корня?

Прислать комментарий     Решение

Задача 61315

Темы:   [ Итерации ]
[ Рекуррентные соотношения (прочее) ]
[ Теоремы о среднем значении ]
Сложность: 4
Классы: 10,11

Сходимость итерационного процесса. Предположим, что функция f (x) отображает отрезок [a;b] в себя, и на этом отрезке | f'(x)| $ \leqslant$ q < 1. Докажите, что уравнение f (x) = x имеет на отрезке [a;b] единственный корень x*. Докажите, что при решении этого уравнения методом итераций будут выполняться неравенства:

| xn + 1 - xn| $\displaystyle \leqslant$ | x1 - x0| . qn,    | x* - xn| $\displaystyle \leqslant$ | x1 - x0| . $\displaystyle {\frac{q^n}{1-q}}$.


Прислать комментарий     Решение

Задача 61409

Темы:   [ Классические неравенства (прочее) ]
[ Выпуклость и вогнутость ]
[ Неравенство Иенсена ]
Сложность: 4
Классы: 10,11

Докажите неравенства:
  а)   n(x1 + ... + xn) ≥ ( + ... +
  б)   + ... + ;
  в)  

  г)     (неравенство Минковского).
  Значения переменных считаются положительными.

Прислать комментарий     Решение

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 92]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .