ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Пусть характеристическое уравнение ( 11.3) последовательности {an} имеет два различных корня x1 и x2. Докажите, что при фиксированных a0, a1 существует ровно одна пара чисел c1, c2 такая, что

an = c1x1n + c2x2n        (n = 0, 1, 2,...).


Вниз   Решение


Автор: Ботин Д.А.

Пешеход обошёл шесть улиц одного города, пройдя каждую ровно два раза, но не смог обойти их, пройдя каждую лишь раз. Могло ли это быть?

ВверхВниз   Решение


В написанном на доске примере на умножение хулиган Петя исправил две цифры. Получилось  4·5·4·5·4 = 2247.
Восстановите исходный пример.

ВверхВниз   Решение


Замкнутая, возможно, самопересекающаяся ломаная симметрична относительно не лежащей на ней точки $O$. Докажите, что число оборотов ломаной вокруг $O$ нечётно. (Числом оборотов вокруг $O$ называется сумма ориентированных углов $$\angle A_1OA_2+\angle A_2OA_3+\ldots+\angle A_{n-1}OA_n+\angle A_nOA_1,$$ делённая на $2\pi$.)

ВверхВниз   Решение


Дана пирамида АВСD (см. рис.). Известно, что
$ \triangle$ADB = $ \triangle$DBC;
$ \triangle$ABD = $ \triangle$BDC;
$ \triangle$BAD = $ \triangle$ABC.
Найдите площадь поверхности пирамиды (сумму площадей четырех треугольников), если площадь треугольника АВС равна 10 см2.

ВверхВниз   Решение


Дискретная теорема Лиувилля. Пусть f (x, y) — ограниченная гармоническая (определение смотри в задаче 11.28) функция, то есть существует положительная константа M такая, что

$\displaystyle \forall$(x, y) $\displaystyle \in$ $\displaystyle \mathbb {Z}$2    | f (x, y)| $\displaystyle \leqslant$ M.

Докажите, что функция f (x, y) равна константе.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 61455

Тема:   [ Функции нескольких переменных ]
Сложность: 2+
Классы: 8,9,10,11

Определение. Пусть функция f (x, y) задана во всех точках плоскости с целыми координатами. Назовем функцию f (x, y) гармонической, если ее значение в каждой точке равно среднему арифметическому значений функции в четырех соседних точках, то есть:
f (x, y)=1/4(f (x+1, y)+ f (x-1, y)+f (x, y+1) + f (x, y-1)).
Пусть f (x, y) и g(x, y) — гармонические функции. Докажите, что для любых a и b функция af (x, y) + bg(x, y) также будет гармонической.

Прислать комментарий     Решение

Задача 61456

Тема:   [ Функции нескольких переменных ]
Сложность: 3-
Классы: 8,9,10,11

Пусть f (x, y) — гармоническая функция (определение смотри в задаче 11.28). Докажите, что функции $ \Delta_{x}^{}$f (x, y) = f (x + 1, y) - f (x, y) и $ \Delta_{y}^{}$f (x, y) = f (x, y + 1) - f (x, y) также будут гармоническими.

Прислать комментарий     Решение

Задача 107987

Темы:   [ Функции нескольких переменных ]
[ Тождественные преобразования ]
Сложность: 4-
Классы: 8,9,10

Каждой паре чисел x и y поставлено в соответствие некоторое число x*y. Найдите 1993*1935, если известно, что для любых трёх чисел x, y, z  выполнены тождества:  x*x = 0  и  x*(y*z) = (x*y) + z.

Прислать комментарий     Решение

Задача 61457

 [Дискретная теорема Лиувилля]
Тема:   [ Функции нескольких переменных ]
Сложность: 4+
Классы: 8,9,10,11

Дискретная теорема Лиувилля. Пусть f (x, y) — ограниченная гармоническая (определение смотри в задаче 11.28) функция, то есть существует положительная константа M такая, что

$\displaystyle \forall$(x, y) $\displaystyle \in$ $\displaystyle \mathbb {Z}$2    | f (x, y)| $\displaystyle \leqslant$ M.

Докажите, что функция f (x, y) равна константе.
Прислать комментарий     Решение

Задача 98169

Темы:   [ Арифметические действия. Числовые тождества ]
[ Характеристические свойства и рекуррентные соотношения ]
[ Функции нескольких переменных ]
Сложность: 4-
Классы: 6,7,8

Задано правило, которое каждой паре чисел x, y ставит в соответствие некоторое число x*y, причём для любых x, y, z выполняются тождества:
  1)  x*x = 0,
  2)  x*(y*z) = (x*y) + z.
Найдите 1993*1932.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .