Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

Пусть точка z движется по единичной окружности против часовой стрелки. Опишите движение следующих точек
  а)  2z2;   б)  z + 3z2;   в) 3z + z2;   г)  z – 3;   д)  (z – i)–1;   е)  (z – 2)–1;   ж)  Rz + ρzn  (ρ < R).

Вниз   Решение


На сторонах выпуклого четырёхугольника ABCD, площадь которого равна 1, взяты точки: K — на AB, L — на BC, M — на CD, N — на AD. При этом $ {\frac{AK}{KB}}$ = 2, $ {\frac{BL}{LC}}$ = $ {\frac{1}{3}}$, $ {\frac{CM}{MD}}$ = 1, $ {\frac{DN}{NA}}$ = $ {\frac{1}{5}}$. Найдите площадь шестиугольника AKLCMN.

ВверхВниз   Решение


Дан многоугольник, у которого каждые две соседние стороны перпендикулярны. Назовём две его вершины не дружными, если биссектрисы многоугольника, выходящие из этих вершин, перпендикулярны. Докажите, что для любой вершины количество не дружных с ней вершин чётно.

ВверхВниз   Решение


Муха двигается из начала координат только вправо или вверх по линиям целочисленной сетки (монотонное блуждание). В каждом узле сетки муха случайным образом выбирает направление дальнейшего движения: вверх или вправо.
  а) Докажите, что рано или поздно муха достигнет точки с абсциссой 2011.
  б) Найдите математическое ожидание ординаты Мухи в момент, когда муха достигла абсциссы 2011.

ВверхВниз   Решение


С помощью циркуля и линейки постройте треугольник, если дана одна его вершина и три прямых, на которых лежат его биссектрисы.

ВверхВниз   Решение


а) Дано шестизначное число  abcdef,  причём  abc + def  делится на 37. Докажите, что и само число делится на 37.
б) Сформулируйте и докажите признак делимости на 37.

ВверхВниз   Решение


Правильный треугольник ABC со стороной a и два ромба ACMN и ABFE расположены так, что точки M и B лежат по разные стороны от прямой AC, а точки F и C — по разные стороны от прямой AB. Найдите расстояние между центрами ромбов, если $ \angle$EAB = $ \angle$ACM = $ \alpha$ ( $ \alpha$ < 90o).

ВверхВниз   Решение


Точка O — центр окружности, вписанной в равнобедренный треугольник ABC (AB = BC). Прямая AO пересекает отрезок BC в точке M. Найдите углы и площадь треугольника ABC, если AO = 3, OM = $ {\frac{27}{11}}$.

ВверхВниз   Решение


Сформулируйте и докажите признаки делимости на 2n и 5n.

ВверхВниз   Решение


В треугольник со сторонами AB = 4, BC = 2, AC = 3 вписана окружность. Найдите площадь треугольника AMN, где M, N — точки касания этой окружности со сторонами AB и AC соответственно.

ВверхВниз   Решение


На плоскости заданы две пересекающиеся прямые, и на них отмечено по одной точке (D и E). Постройте треугольник ABC, у которого биссектрисы CD и AE лежат на данных прямых, а основания этих биссектрис— данные точки D и E.

ВверхВниз   Решение


Постройте треугольник ABC, зная три точки A1, B1, C1, в которых биссектрисы его углов пересекают описанную окружность.

ВверхВниз   Решение


Автор: Белухов Н.

Вокруг треугольника ABC описали окружность k. На сторонах треугольника отметили три точки A1, B1 и C1, после чего сам треугольник стёрли. Докажите, что его можно однозначно восстановить тогда и только тогда, когда прямые AA1, BB1 и CC1 пересекаются в одной точке.

Вверх   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 [Всего задач: 59]      



Задача 55649

Темы:   [ Симметрия и построения ]
[ Построение треугольников по различным точкам ]
Сложность: 4+
Классы: 8,9

Даны прямые l1, l2 и l3, пересекающиеся в одной точке. С помощью циркуля и линейки постройте треугольник ABC, для которого данные прямые были бы серединными перпендикулярами к его сторонам.

Прислать комментарий     Решение


Задача 55648

Темы:   [ Симметрия и построения ]
[ Построение треугольников по различным точкам ]
Сложность: 4+
Классы: 8,9

С помощью циркуля и линейки постройте треугольник ABC, если даны его вершины A и B, прямая l, на которой лежит вершина C, и разность углов $ \angle$A - $ \angle$B = $ \varphi$.

Прислать комментарий     Решение


Задача 64749

Темы:   [ Вписанные и описанные окружности ]
[ Построение треугольников по различным точкам ]
[ Вспомогательные подобные треугольники ]
[ Соображения непрерывности ]
[ Доказательство от противного ]
[ Теоремы Чевы и Менелая ]
Сложность: 5-
Классы: 10,11

Автор: Белухов Н.

Вокруг треугольника ABC описали окружность k. На сторонах треугольника отметили три точки A1, B1 и C1, после чего сам треугольник стёрли. Докажите, что его можно однозначно восстановить тогда и только тогда, когда прямые AA1, BB1 и CC1 пересекаются в одной точке.

Прислать комментарий     Решение

Задача 54643

Темы:   [ Прямая Эйлера и окружность девяти точек ]
[ Симметрия и построения ]
[ Построение треугольников по различным точкам ]
[ Построение треугольников по различным точкам ]
[ Прямая Эйлера и окружность девяти точек ]
Сложность: 4
Классы: 8,9

С помощью циркуля и линейки постройте треугольник, если на плоскости отмечены три точки: O — центр описанной окружности, P — точка пересечения медиан и H — основание одной из высот этого треугольника.
Прислать комментарий     Решение


Страница: << 6 7 8 9 10 11 12 [Всего задач: 59]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .