Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 16 задач
Версия для печати
Убрать все задачи

ЕГЭ по математике в волшебной стране Оз устроено следующим образом. Каждую работу независимо друг от друга проверяют три преподавателя, и каждый ставит за каждую задачу 0 или 1 балл. Затем компьютер находит среднее арифметическое оценок за эту задачу и округляет его до ближайшего целого. Затем баллы, полученные за все задачи, суммируются. Случилось так, что в одной из работ каждый из трёх экспертов поставил по 1 баллу за 3 задачи и 0 баллов за все прочие задачи. Найдите наибольший возможный суммарный балл за эту работу.

Вниз   Решение


Автор: Сонкин М.

Пусть окружность, вписанная в треугольник ABC , касается его сторон AB , BC и AC в точках K , L и M соответственно. К окружностям, вписанным в треугольники BKL , CLM и AKM проведены попарно общие внешние касательные, отличные от сторон треугольника ABC . Докажите, что эти касательные пересекаются в одной точке.

ВверхВниз   Решение


В остроугольном треугольнике отметили отличные от вершин точки пересечения описанной окружности с высотами, проведенными из двух вершин, и биссектрисой, проведенной из третьей вершины, после чего сам треугольник стерли. Восстановите его.


ВверхВниз   Решение


График линейной функции  у = kх + k + 1,  где  k > 0,  пересекает оси координат в точках А и В.
Какова наименьшая возможная площадь треугольника АВО (О – начало координат)?

ВверхВниз   Решение


Дан треугольник ABC и окружность, описанная вокруг него. K — точка пересечения биссектрис внутреннего угла B и внешнего угла C , L — точка пересечения биссектрис внутреннего угла C и внешнего угла B ; M — середина отрезка KL . Докажите, что M — середина дуги BAC .

ВверхВниз   Решение


Докажите, что если x1, x2, x3 – корни уравнения  x³ + px + q = 0, то  

ВверхВниз   Решение


Прямая, соединяющая центр описанной окружности и точку пересечения высот неравнобедренного треугольника, параллельна биссектрисе одного из его углов. Чему равен этот угол?

ВверхВниз   Решение


На окружности отмечены 10 точек, занумерованные по часовой стрелке: A1, A2, ..., A10, причём их можно разбить на пары симметричных относительно центра окружности. Изначально в каждой отмеченной точке сидит по кузнечику. Каждую минуту один из кузнечиков прыгает вдоль окружности через своего соседа так, чтобы расстояние между ними не изменилось. При этом нельзя пролетать над другими кузнечиками и попадать в точку, где уже сидит кузнечик. Через некоторое время оказалось, что какие-то 9 кузнечиков сидят в точках A1, A2, ..., A9, а десятый сидит на дуге A9A10A1. Можно ли утверждать, что он сидит именно в точке A10?

ВверхВниз   Решение


Среднее арифметическое десяти различных натуральных чисел равно 15. Найдите наибольшее значение наибольшего из этих чисел.

ВверхВниз   Решение


Докажите, что график многочлена
  а)  x³ + px;   б)  x³ + px + q;   в)  ax³ + bx² + cx + d
имеет центр симметрии.

ВверхВниз   Решение


Пусть a и b – натуральные взаимно простые числа. Рассмотрим точки плоскости с целыми координатами  (x, y),  лежащие в полосе  0 ≤ x ≤ b – 1.  Каждой такой точке припишем целое число  N(x, y) = ax + by.
  а) Докажите, что для каждого натурального c существует ровно одна точка  (x, y)  (0 ≤ x ≤ b – 1),  для которой  N(x, y) = c.
  б) Теорема Сильвестра. Докажите, что наибольшее c, для которого уравнение  ax + by = c  не имеет решений в целых неотрицательных числах, имеет вид
c = ab – a – b.

ВверхВниз   Решение


Постройте многочлен, корни которого равны квадратам корней многочлена  x3 + x2 – 2x – 1.

ВверхВниз   Решение


Докажите, что для любого натурального  n ≥ 2  справедливо неравенство:   .

ВверхВниз   Решение


Четырёхугольник ABCD вписан в окружность S с центром O . Биссектриса угла ABD пересекает сторону AD и окружность S в точках K и M соответственно. Биссектриса угла CBD пересекает сторону CD и окружность S в точках L и N соответственно. Известно, что прямые KL и MN параллельны. Докажите, что описанная окружность треугольника MON проходит через середину отрезка BD .

ВверхВниз   Решение


  На плоскости даны три прямые l1, l2, l3, образующие треугольник, и отмечена точка O – центр описанной окружности этого треугольника. Для произвольной точки X плоскости обозначим через Xi точку, симметричную точке X относительно прямой li,  i = 1, 2, 3.
  а) Докажите, что для произвольной точки M прямые, соединяющие середины отрезков O1O2 и M1M2, O2O3 и M2M3, O3O1 и M3M1, пересекаются в одной точке.
  б) Где может лежать эта точка пересечения?

ВверхВниз   Решение


Четырёхугольник ABCD вписан в окружность с центром O. Биссектрисы его углов образуют четырёхугольник, вписанный в окружность с центром I, а биссектрисы внешних углов – четырёхугольник, вписанный в окружность с центром J. Докажите, что O – середина отрезка IJ.

Вверх   Решение

Задачи

Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 158]      



Задача 65045

Темы:   [ Длины сторон, высот, медиан и биссектрис ]
[ Примеры и контрпримеры. Конструкции ]
[ Средняя линия треугольника ]
[ Центральная симметрия помогает решить задачу ]
[ Соображения непрерывности ]
Сложность: 4+
Классы: 9,10,11

Существует ли неравнобедренный треугольник, у которого медиана, проведённая из одной вершины, биссектриса, проведённая из другой, и высота, проведённая из третьей, равны?

Прислать комментарий     Решение

Задача 65939

Темы:   [ Вписанные и описанные окружности ]
[ Ортоцентр и ортотреугольник ]
[ Прямая Эйлера и окружность девяти точек ]
[ Центральная симметрия помогает решить задачу ]
[ Гомотетия помогает решить задачу ]
[ Векторы помогают решить задачу ]
Сложность: 4+
Классы: 9,10,11

  На плоскости даны три прямые l1, l2, l3, образующие треугольник, и отмечена точка O – центр описанной окружности этого треугольника. Для произвольной точки X плоскости обозначим через Xi точку, симметричную точке X относительно прямой li,  i = 1, 2, 3.
  а) Докажите, что для произвольной точки M прямые, соединяющие середины отрезков O1O2 и M1M2, O2O3 и M2M3, O3O1 и M3M1, пересекаются в одной точке.
  б) Где может лежать эта точка пересечения?

Прислать комментарий     Решение

Задача 111879

Темы:   [ Ортоцентр и ортотреугольник ]
[ Удвоение медианы ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Центральная симметрия помогает решить задачу ]
[ Вспомогательные подобные треугольники ]
[ Три точки, лежащие на одной прямой ]
Сложность: 4+
Классы: 9,10

В неравнобедренном треугольнике ABC точки H и M – точки пересечения высот и медиан соответственно. Через вершины A, B и C проведены прямые, перпендикулярные прямым AM, BM, CM соответственно. Докажите, что точка пересечения медиан треугольника, образованного проведёнными прямыми, лежит на прямой MH.

Прислать комментарий     Решение

Задача 52460

 [Теорема о бабочке]
Темы:   [ Вспомогательные подобные треугольники ]
[ Вспомогательная окружность ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Центральная симметрия помогает решить задачу ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Радикальная ось ]
[ Применение проективных преобразований, сохраняющих окружность ]
Сложность: 5-
Классы: 8,9

Через середину C произвольной хорды AB окружности проведены две хорды KL и MN (точки K и M лежат по одну сторону от AB). Отрезок KN пересекает AB в точке P. Отрезок LM пересекает AB в точке Q. Докажите, что  PC = QC.

Прислать комментарий     Решение

Задача 64977

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Биссектриса угла (ГМТ) ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 5-
Классы: 9,10,11

Четырёхугольник ABCD вписан в окружность с центром O. Биссектрисы его углов образуют четырёхугольник, вписанный в окружность с центром I, а биссектрисы внешних углов – четырёхугольник, вписанный в окружность с центром J. Докажите, что O – середина отрезка IJ.

Прислать комментарий     Решение

Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 158]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .