Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 16 задач
Версия для печати
Убрать все задачи

Две окружности касаются описанной окружности треугольника ABC в точке K; кроме того, одна из этих окружностей касается стороны AB в точке M, а другая касается стороны AC в точке N. Докажите, что центр вписанной окружности треугольника ABC лежит на прямой MN.

Вниз   Решение


Дано два тетраэдра A1A2A3A4 и B1B2B3B4. Рассмотрим шесть пар рёбер AiAj и BkBl, где  (i, j, k, l)  – перестановка чисел  (1, 2, 3, 4)  (например, A1A2 и B3B4). Известно, что во всех парах, кроме одной, рёбра перпендикулярны. Докажите, что в оставшейся паре рёбра тоже перпендикулярны.

ВверхВниз   Решение


На дуге CD описанной окружности квадрата ABCD взята точка P. Докажите, что  PA + PC = $ \sqrt{2}$PB.

ВверхВниз   Решение


Среди всех треугольников, вписанных в данную окружность, найдите тот, у которого максимальна сумма квадратов длин сторон.

ВверхВниз   Решение


Найдите геометрическое место точек, из которых данный отрезок виден под данным углом.

ВверхВниз   Решение


Площадь данного выпуклого четырёхугольника равна S. Найдите площадь четырёхугольника с вершинами в серединах сторон данного.

ВверхВниз   Решение


Дан набор из нескольких гирек, на каждой написана масса. Известно, что набор масс и набор надписей одинаковы, но возможно некоторые надписи перепутаны. Весы представляют из себя горизонтальный отрезок, закреплённый за середину. При взвешивании гирьки прикрепляются в произвольные точки отрезка, после чего весы остаются в равновесии либо отклоняются в ту или иную сторону. Всегда ли удастся за одно взвешивание проверить, все надписи верны или нет? (Весы будут в равновесии, если сумма моментов гирь справа от середины равна сумме моментов гирь слева; иначе отклонятся в сторону, где сумма больше. Моментом гири называется произведение ms массы гири m на расстояние s он нее до середины отрезка.)

ВверхВниз   Решение


Найдите предел последовательности, которая задана условиями

a1 = 2,        an + 1 = $\displaystyle {\dfrac{a_n}{2}}$ + $\displaystyle {\dfrac{a_n^2}{8}}$    (n $\displaystyle \geqslant$ 1).


ВверхВниз   Решение


Точка M внутри выпуклого четырехугольника ABCD такова, что площади треугольников ABM, BCM, CDM и DAM равны. Верно ли, что ABCD — параллелограмм, а точка M — точка пересечения его диагоналей?

ВверхВниз   Решение


Вписанная окружность касается сторон BC, CA и AB в точках A1, B1 и C1. Пусть Q — середина отрезка A1B1. Докажите, что $ \angle$B1C1C = $ \angle$QC1A1.

ВверхВниз   Решение


В тетраэдре ABCD все плоские углы при вершине A равны по 60o . Докажите, что AB + AC + AD BC + CD + DB .

ВверхВниз   Решение


Докажите, что сечением пирамиды ABCD плоскостью, параллельной рёбрам AC и BD , является параллелограмм, причём для одной такой плоскости этот параллелограмм будет ромбом. Найдите сторону этого ромба, если AC = a , BD = b .

ВверхВниз   Решение


В треугольнике известны две стороны a и b. Какой должна быть третья сторона, чтобы наибольший угол треугольника имел наименьшую величину?

ВверхВниз   Решение


В трапеции ABCD ( BC || AD ) известно, что AB = c и расстояние от середины отрезка CD до прямой AB равно d . Найдите площадь трапеции.

ВверхВниз   Решение


Основанием пирамиды SABC является правильный треугольник, сторона которого равна 1. Основанием высоты, опущенной из вершины S , является точка O , лежащая внутри треугольника ABC . Расстояние от точки O до стороны CA равно , а расстояние от O до AB относится к расстоянию от O до BC как 3:4 . Площадь грани SBC равна . Найдите объём пирамиды.

ВверхВниз   Решение


Автор: Нилов Ф.

Точки A', B', C' лежат на сторонах BC, CA, AB треугольника ABC. Точка X такова, что  ∠AXB = ∠A'C'B' + ∠ACB  и  ∠BXC = ∠B'A'C' + ∠BAC.
Докажите, что четырёхугольник XA'BC' – вписанный.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 >> [Всего задач: 20]      



Задача 65764

Темы:   [ Три окружности пересекаются в одной точке ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Средняя линия треугольника ]
Сложность: 4
Классы: 9,10,11

Автор: Якубов А.

В треугольнике ABC медианы AMA, BMB и CMC пересекаются в точке M. Построим окружность ΩA, проходящую через середину отрезка AM и касающуюся отрезка BC в точке MA. Аналогично строятся окружности ΩB и ΩC. Докажите, что окружности ΩA, ΩB и ΩC имеют общую точку.

Прислать комментарий     Решение

Задача 110857

Темы:   [ Три окружности пересекаются в одной точке ]
[ Вписанные четырехугольники ]
Сложность: 4
Классы: 8,9

Около остроугольного треугольника ABC описана окружность. На её меньших дугах BC , AC и AB взяты точки A1 , B1 и C1 соответственно. Точки A2 , B2 и C2 – ортоцентры треугольников соответственно BA1C , AB1C и AC1B . Докажите, что описанные окружности треугольников BA2C , AB2C и AC2B пересекаются в одной точке.
Прислать комментарий     Решение


Задача 56626

Тема:   [ Три окружности пересекаются в одной точке ]
Сложность: 5
Классы: 8,9

На сторонах BC, CA и AB треугольника ABC взяты точки A1, B1 и C1. Докажите, что если треугольники A1B1C1 и ABC подобны и противоположно ориентированы, то описанные окружности треугольников  AB1C1, A1BC1 и A1B1C проходят через центр описанной окружности треугольника ABC.
Прислать комментарий     Решение


Задача 56627

Тема:   [ Три окружности пересекаются в одной точке ]
Сложность: 6
Классы: 8,9

Точки A', B' и C' симметричны некоторой точке P относительно сторон BC, CA и AB треугольника ABC.
а) Докажите, что описанные окружности треугольников AB'C', A'BC', A'B'C и ABC имеют общую точку.
б) Докажите, что описанные окружности треугольников A'BC, AB'C, ABC' и A'B'C' имеют общую точку Q.
в) Пусть I, J, K и O — центры описанных окружностей треугольников  A'BC, AB'C, ABC' и A'B'C'. Докажите, что  QI : OI = QJ : OJ = QK : OK.
Прислать комментарий     Решение


Задача 65004

Темы:   [ Вписанные и описанные окружности ]
[ Три окружности пересекаются в одной точке ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9

Автор: Нилов Ф.

Точки A', B', C' лежат на сторонах BC, CA, AB треугольника ABC. Точка X такова, что  ∠AXB = ∠A'C'B' + ∠ACB  и  ∠BXC = ∠B'A'C' + ∠BAC.
Докажите, что четырёхугольник XA'BC' – вписанный.

Прислать комментарий     Решение

Страница: << 1 2 3 4 >> [Всего задач: 20]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .