ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Алгебра и арифметика
>>
Алгебраические неравенства и системы неравенств
>>
Классические неравенства
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На бесконечной ленте выписаны в ряд числа. Первой идёт единица, а каждое следующее число получается из предыдущего прибавлением к нему наименьшей ненулевой цифры его десятичной записи. Сколько знаков в десятичной записи числа, стоящего в этом ряду на 9·10001000-м месте? Решение |
Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 258]
На бесконечной ленте выписаны в ряд числа. Первой идёт единица, а каждое следующее число получается из предыдущего прибавлением к нему наименьшей ненулевой цифры его десятичной записи. Сколько знаков в десятичной записи числа, стоящего в этом ряду на 9·10001000-м месте?
Пусть a – положительный корень уравнения x2017 – x – 1 = 0, а b – положительный корень уравнения y4034 – y = 3a.
Куб, состоящий из $(2n)^3$ единичных кубиков, проткнут несколькими спицами, параллельными рёбрам куба. Каждая спица протыкает ровно 2$n$ кубиков, каждый кубик проткнут хотя бы одной спицей.
2n шахматистов дважды провели круговой турнир (за победу начисляется одно очко, за ничью – ½, за поражение – 0).
Докажите, что из всех треугольников данного периметра 2p равносторонний имеет наибольшую плошадь.
Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 258] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|