Processing math: 35%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Через концы диаметра окружности проведены две хорды, пересекающиеся на окружности и равные 12 и 16. Найдите расстояния от центра окружности до этих хорд.

Вниз   Решение


Автор: Шатунов Л.

Дан выпуклый четырехугольник ABCD. Прямая lAC пересекает прямые AD,BC,AB,CD в точках X,Y,Z,T. Описанные окружности треугольников XYB и ZTB вторично пересекаются в точке R. Докажите, что R лежит на прямой BD.

ВверхВниз   Решение


Дан острый угол с вершиной A и точка E внутри него. Построить на сторонах угла точки B, C так, чтобы E была центром окружности Эйлера треугольника ABC.

ВверхВниз   Решение


Угол при основании равнобедренного треугольника равен $ \varphi$. Найдите отношение радиуса вписанной в данный треугольник окружности к радиусу описанной окружности.

ВверхВниз   Решение


Пусть h — наибольшая высота нетупоугольного треугольника. Докажите, что r + R $ \leq$ h.

ВверхВниз   Решение


Сторона AD параллелограмма ABCD разделена на n равных частей. Первая точка деления P соединена с вершиной B.
Доказать, что прямая BP отсекает на диагонали AC часть AQ, которая равна 1/n+1 части диагонали:  AQ = AC/n+1.

ВверхВниз   Решение


Во вписанном четырёхугольнике ABCD известны углы:  ∠DAB = α,  ∠ABC = β,  ∠BKC = γ,  где K – точка пересечения диагоналей. Найдите угол ACD.

ВверхВниз   Решение


Многочлен  P(x,y)  таков, что для всякого целого  n  каждый из многочленов  P(n, y)  и  P(x, n)  либо тождественно равен нулю, либо имеет степень не выше n.
Может ли многочлен  P(x, x) иметь нечётную степень?

ВверхВниз   Решение


Из вершины B произвольного треугольника ABC проведены вне треугольника прямые BM и BN, так что  ∠ABM = ∠CBN.  Точки A' и C' симметричны точкам A и C относительно прямых BM и BN (соответственно). Доказать, что  AC' = A'C.

ВверхВниз   Решение


Найдите геометрическое место точек M, лежащих внутри ромба ABCD и обладающих тем свойством, что  ∠AMD + ∠BMC = 180°.

ВверхВниз   Решение


Пусть P(x) – многочлен степени  n ≥ 2  с неотрицательными коэффициентами, а a, b и c – длины сторон некоторого остроугольного треугольника.
Докажите, что числа    также являются длинами сторон некоторого остроугольного треугольника.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 63]      



Задача 61437

Темы:   [ Многочлены (прочее) ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 3+
Классы: 9,10,11

Пусть  f(x) – многочлен степени m. Докажите, что если  m < n,  то  Δnf(x) = 0.  Чему равна величина Δmf(x)?

Прислать комментарий     Решение

Задача 66160

Темы:   [ Многочлены (прочее) ]
[ Алгебраические задачи на неравенство треугольника ]
[ Алгебраические неравенства (прочее) ]
Сложность: 3+
Классы: 9,10,11

Пусть P(x) – многочлен степени  n ≥ 2  с неотрицательными коэффициентами, а a, b и c – длины сторон некоторого остроугольного треугольника.
Докажите, что числа    также являются длинами сторон некоторого остроугольного треугольника.

Прислать комментарий     Решение

Задача 66834

Темы:   [ Многочлены (прочее) ]
[ Многочлен n-й степени имеет не более n корней ]
Сложность: 3+
Классы: 8,9,10,11

Многочлен  P(x, y)  таков, что для всякого целого  n\geqslant 0  каждый из многочленов  P(n, y)  и  P(x, n)  либо тождественно равен нулю, либо имеет степень не выше n.
Может ли многочлен  P(x, x) иметь нечётную степень?

Прислать комментарий     Решение

Задача 66844

Темы:   [ Многочлены (прочее) ]
[ Тождественные преобразования ]
[ Уравнения в целых числах ]
Сложность: 3+
Классы: 8,9,10,11

Автор: Юран А.Ю.

Целое число n таково, что уравнение  x^2 + y^2 + z^2 - xy - yz - zx = n  имеет решение в целых числах.
Докажите, что тогда и уравнение  x^2 + y^2 - xy = n  имеет решение в целых числах.

Прислать комментарий     Решение

Задача 66849

Тема:   [ Многочлены (прочее) ]
Сложность: 3+
Классы: 8,9,10,11

Существует ли непостоянный многочлен P(x), который можно представить в виде суммы  a(x) + b(x),  где a(x) и b(x) – квадраты многочленов с действительными коэффициентами,
  а) ровно одним способом?
  б) ровно двумя способами?
Способы, отличающиеся лишь порядком слагаемых, считаются одинаковыми.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 63]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .