ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На диагонали AC вписанного четырёхугольника ABCD взяли произвольную точку P и из неё опустили перпендикуляры PK, PL, PM, PN, PO на прямые AB, BC, CD, DA, BD соответственно. Докажите, что расстояние от P до KN равно расстоянию от O до ML. Решение |
Страница: << 93 94 95 96 97 98 99 >> [Всего задач: 829]
Даны две окружности и три прямые, каждая прямая высекает на окружностях хорды равной длины. Точки пересечения прямых образуют треугольник.
Из вершины C треугольника ABC проведены касательные CX, CY к окружности, проходящей через середины сторон треугольника.
Дан фиксированный треугольник ABC. По его описанной окружности движется точка P так, что хорды BC и AP пересекаются. Прямая AP разрезает треугольник BPC на два меньших, центры вписанных окружностей которых обозначим через I1 и I2 соответственно. Прямая I1I2 пересекает прямую BC в точке Z. Докажите, что все прямые ZP проходят через фиксированную точку.
Точки IA, IB, IC – центры вневписанных окружностей треугольника ABC, касающихся сторон BC, AC и AB соответственно. Перпендикуляр, опущенный из IA на AC, пересекает перпендикуляр, опущенный из IB на BC, в точке XC. Аналогично определяются точки XA и XB. Докажите, что прямые IAXA, IBXB и ICXC пересекаются в одной точке.
На диагонали AC вписанного четырёхугольника ABCD взяли произвольную точку P и из неё опустили перпендикуляры PK, PL, PM, PN, PO на прямые AB, BC, CD, DA, BD соответственно. Докажите, что расстояние от P до KN равно расстоянию от O до ML.
Страница: << 93 94 95 96 97 98 99 >> [Всего задач: 829] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|