Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

У Юры есть калькулятор, который позволяет умножать число на 3, прибавлять к числу 3 или (если число делится на 3 нацело) делить на 3. Как на этом калькуляторе получить из числа 1 число 11?

Вниз   Решение


Найдите радиусы вписанной и вневписанных окружностей треугольника со сторонами 5, 12 и 13.

ВверхВниз   Решение


Фили и Кили играют в шахматы. Кроме шахматной доски у них есть одна ладья, которую они поставили в правый нижний угол, и делают ей ходы по очереди, причем ходить разрешается только вверх или влево (на любое количество клеток). Кто не может сделать хода, тот проиграл. Кили ходит первым. Кто выиграет при правильной игре?

ВверхВниз   Решение


Маленькие детки кушали конфетки. Каждый съел на 7 конфет меньше, чем все остальные вместе, но все же больше одной конфеты.
Сколько всего конфет было съедено?

ВверхВниз   Решение


Имеются чашечные весы без гирь и 3 одинаковые по внешнему виду монеты, одна из которых фальшивая: она легче настоящих (настоящие монеты одного веса). Сколько надо взвешиваний, чтобы определить фальшивую монету?

ВверхВниз   Решение


На едином экзамене 333 ученика допустили в общей сложности 1000 ошибок.
Возможно ли при этом, что учеников, сделавших более чем по 5 ошибок, оказалось больше, чем учеников, сделавших менее чем по 4 ошибки?

ВверхВниз   Решение


На столе лежат в ряд пять монет: средняя — вверх орлом, а остальные — вверх решкой. Разрешается одновременно перевернуть три рядом лежащие монеты. Можно ли при помощи нескольких таких переворачиваний все пять монет положить вверх орлом?

ВверхВниз   Решение


В таблицу 29×29 вписали числа 1, 2, 3, ..., 29, каждое по 29 раз. Оказалось, что сумма чисел над главной диагональю в три раза больше суммы чисел под этой диагональю. Найдите число, вписанное в центральную клетку таблицы.

ВверхВниз   Решение


По периметру круглого торта диаметром n/p метров расположены n вишенок. Если на концах некоторой дуги находятся вишенки, то количество остальных вишенок на этой дуге меньше, чем длина дуги в метрах. Докажите, что торт можно разрезать на n равных секторов так, что в каждом куске будет по вишенке.

ВверхВниз   Решение


В кубке Водоканала по футболу участвовали команды "Помпа", "Фильтр", "Насос" и "Шлюз". Каждая команда сыграла с каждой из остальных по одному разу (за победу давалось 3 очка, за ничью – 1, за проигрыш – 0). Команда "Помпа" набрала больше всех очков, команда "Шлюз" – меньше всех. Могло ли оказаться так, что "Помпа" обогнала "Шлюз" всего на 2 очка?

ВверхВниз   Решение


Точка M лежит на стороне BC треугольника ABC . Известно, что радиус окружности, вписанной в треугольник ABM , в два раза больше радиуса окружности, вписанной в треугольник ACM . Может ли отрезок AM оказаться медианой треугольника ABC ?

ВверхВниз   Решение


Четырёхугольник ABCD, диагонали которого взаимно перпендикулярны, вписан в окружность с центром O. Найдите расстояние от точки O до стороны AB, если известно, что CD = 8.

ВверхВниз   Решение


Автор: Mudgal A.

В остроугольном треугольнике ABC углы B и C больше 60°. Точки P, Q на сторонах AB, AC таковы, что A, P, Q и ортоцентр треугольника H лежат на одной окружности; K – середина отрезка PQ. Докажите, что  ∠BKC > 90°.

Вверх   Решение

Задачи

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 152]      



Задача 66308

Темы:   [ Ортоцентр и ортотреугольник ]
[ Неравенства для углов треугольника ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Признаки подобия ]
[ Средняя линия треугольника ]
[ ГМТ - прямая или отрезок ]
Сложность: 4
Классы: 9,10

Автор: Mudgal A.

В остроугольном треугольнике ABC углы B и C больше 60°. Точки P, Q на сторонах AB, AC таковы, что A, P, Q и ортоцентр треугольника H лежат на одной окружности; K – середина отрезка PQ. Докажите, что  ∠BKC > 90°.

Прислать комментарий     Решение

Задача 110883

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Отношения площадей ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Признаки подобия ]
Сложность: 4
Классы: 8,9

В треугольнике ABC, таком, что  AB = BC = 4  и   AC = 2,  проведены биссектриса AA1, медиана BB1 и высота CC1.
Найдите площадь треугольника, образованного пересечением прямых:   а) AC, AA1 и CC1;   б) AA1, BB1 и CC1.

Прислать комментарий     Решение

Задача 110884

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Отношения площадей ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Признаки подобия ]
Сложность: 4
Классы: 8,9

В треугольнике ABC, где  AB = BC = 6  и   AC = 2,  проведены медиана AA1, высота BB1 и биссектриса CC1.
Найдите площадь треугольника, образованного пересечением прямых:   а) BB1, CC1 и BC;   б) AA1, BB1 и CC1.

Прислать комментарий     Решение

Задача 110885

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Отношения площадей ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Признаки подобия ]
Сложность: 4
Классы: 8,9

В треугольнике ABC, где  AB = BC = 4  и   AC = 2,  проведены медиана AA1, биссектриса BB1 и высота CC1.
Найдите площадь треугольника, образованного пересечением прямых:   а) AB, AA1 и BB1;   б) AA1, BB1 и CC1.

Прислать комментарий     Решение

Задача 110886

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Отношения площадей ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Признаки подобия ]
Сложность: 4
Классы: 8,9

В треугольнике ABC, где  AB = BC = 6  и   AC = 2,  проведены биссектриса AA1, высота BB1 и высота CC1.
Найдите площадь треугольника, образованного пересечением прямых:   а) AB, AA1 и BB1;   б) AA1, BB1 и CC1.

Прислать комментарий     Решение

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 152]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .