Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 17 задач
Версия для печати
Убрать все задачи

Основанием прямой призмы служит ромб с острым углом α . Найдите объём призмы, если её большая диагональ равна l и образует с плоскостью основания угол β .

Вниз   Решение


Правильный пятиугольник и правильный двадцатиугольник вписаны в одну и ту же окружность.
Что больше: сумма квадратов длин всех сторон пятиугольника или сумма квадратов длин всех сторон двадцатиугольника?

ВверхВниз   Решение


Автор: Анджанс А.

F(x) – возрастающая функция, определённая на отрезке  [0, 1].  Известно, что область её значений принадлежит отрезку  [0, 1].  Доказать, что, каково бы ни было натуральное n, график функции можно покрыть N прямоугольниками, стороны которых параллельны осям координат так, что площадь каждого равна 1/n². (В прямоугольник мы включаем его внутренние точки и точки его границы.)

ВверхВниз   Решение


Человек имеет 10 друзей и в течение нескольких дней приглашает некоторых из них в гости так, что компания ни разу не повторяется (в какой-то из дней он может не приглашать никого). Сколько дней он может так делать?

ВверхВниз   Решение


Докажите, что нечётное число, являющееся произведением n различных простых сомножителей, можно представить в виде разности квадратов двух натуральных чисел ровно 2n–1 различными способами.

ВверхВниз   Решение


Дан ромб ABCD с тупым углом при вершине A. На продолжении стороны AD за точку D взята точка K. Отрезки BK и CD пересекаются в точке L.
Найдите площадь треугольника ABK, если  BL = 2,  KL = 5,  а высота ромба равна 1.

ВверхВниз   Решение


Автор: Mahdi Etesami Fard

Точка D лежит на основании BC равнобедренного треугольника ABC, а точки M и K – на его боковых сторонах AB и AC соответственно, причём AMDK – параллелограмм. Прямые MK и BC пересекаются в точке L. Перпендикуляр к BC, восставленный из точки D, пересекает прямые AB и AC в точках X и Y соответственно. Докажите, что окружность с центром L, проходящая через D, касается описанной окружности треугольника AXY.

ВверхВниз   Решение


Автор: Фольклор

В трапеции ABCD биссектриса тупого угла B пересекает основание AD в точке K – его середине, M – середина BC,  AB = BC.
Найдите отношение  KM : BD.

ВверхВниз   Решение


Обозначим через S(m) сумму цифр натурального числа m. Докажите, что существует бесконечно много таких натуральных n, что  S(3n) ≥ S(3n+1).

ВверхВниз   Решение


Докажите, что количество положительных корней многочлена  f(x) = anxn + ... + a1x + a0  не превосходит числа перемен знака в последовательности  an, ..., a1, a0.

ВверхВниз   Решение


На продолжении стороны BC ромба ABCD за точку B взята точка M так, что угол MDC – тупой. Отрезки AB и DM пересекаются в точке N.
Найдите площадь треугольника CDM, если  DN = 3,  MN = 4,  а высота ромба равна 2.

ВверхВниз   Решение


Про углы треугольника ABC известно, что      и    .   Найдите величину угла C.

ВверхВниз   Решение


Пусть X – такая точка внутри треугольника ABC, что  XA·BC = XB·AC = XC·ABI1, I2, I3 – центры вписанных окружностей треугольников XBC, XCA и XAB соответственно. Докажите, что прямые AI1, BI2 и CI3 пересекаются в одной точке.

ВверхВниз   Решение


Круг радиуса 1 покрыт семью одинаковыми кругами. Докажите, что их радиусы не меньше ½.

ВверхВниз   Решение


Докажите, что для любого натурального числа $n\geqslant 2$ и для любых действительных чисел $a_1, a_2, \ldots, a_n$, удовлетворяющих условию $a_1+a_2+\ldots+a_n\ne 0$, уравнение \begin{align*} &a_1(x-a_2)(x-a_3)\ldots(x-a_n)+\\+&a_2(x-a_1)(x-a_3)\ldots(x-a_n)+\ldots\\ \ldots+&a_n(x-a_1)(x-a_2)\ldots(x-a_{n-1})=0 \end{align*} имеет хотя бы один действительный корень.

ВверхВниз   Решение


Автор: Замков В.

Витя выложил из карточек с цифрами пример на сложение и затем поменял местами две карточки. Как видите, равенство нарушилось. Какие карточки переставил Витя?

ВверхВниз   Решение


Автор: Мухин Д.Г.

Митя купил на день рождения круглый торт диаметром 36 сантиметров и 13 тоненьких свечек. Мите не нравится, когда свечки стоят слишком близко, поэтому он хочет поставить их на расстоянии не меньше 10 сантиметров друг от друга. Поместятся ли все свечки на торте?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 22]      



Задача 66580

Темы:   [ Окружности (прочее) ]
[ Метрические соотношения ]
[ Геометрические неравенства ]
[ Построения с помощью вычислений ]
Сложность: 3+
Классы: 8,9,10,11

Автор: Мухин Д.Г.

Митя купил на день рождения круглый торт диаметром 36 сантиметров и 13 тоненьких свечек. Мите не нравится, когда свечки стоят слишком близко, поэтому он хочет поставить их на расстоянии не меньше 10 сантиметров друг от друга. Поместятся ли все свечки на торте?
Прислать комментарий     Решение


Задача 67433

Темы:   [ Окружности (прочее) ]
[ Описанные четырехугольники ]
Сложность: 4
Классы: 9,10,11

Даны две равные окружности $\omega_1$ и $\omega_2$ с центрами $O_1$ и $O_2$. На отрезке $O_1O_2$ взяты точки $X$ и $Y$ так, что $O_1Y = O_2X$. Точки $A$ и $B$ лежат на $\omega_1$, и прямая $AB$ проходит через $X$. Точки $C$ и $D$ лежат на $\omega_2$, и прямая $CD$ проходит через $Y$. Докажите, что существует окружность, касающаяся прямых $AO_1$, $BO_1$, $CO_2$ и $DO_2$.

Прислать комментарий     Решение

Задача 52609

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Окружности (прочее) ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 2+
Классы: 8,9

Угловая величина дуги AB равна  α < 90°.  На продолжении радиуса OA отложен отрезок AC, равный хорде AB, и точка C соединена с B. Найдите угол ACB.

Прислать комментарий     Решение

Задача 52610

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Окружности (прочее) ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 2+
Классы: 8,9

В треугольнике ABC угол C прямой. Из центра C радиусом AC описана дуга ADE, пересекающая гипотенузу в точке D, а катет CB – в точке E.
Найдите угловые величины дуг AD и DE, если  ∠B = 40°.

Прислать комментарий     Решение

Задача 108543

Темы:   [ Метод координат на плоскости ]
[ Окружности (прочее) ]
Сложность: 2+
Классы: 8,9,10

Даны точки A(0;0), B(- 2;1), C(3;3), D(2; - 1) и окружность (x - 1)2 + (y + 3)2 = 25. Выясните, где расположены эти точки: на окружности, внутри или вне окружности.

Прислать комментарий     Решение


Страница: << 1 2 3 4 5 >> [Всего задач: 22]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .