ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Белухов Н.

Правильный $n$-угольник со стороной 1 вращается вокруг другого такого же $n$-угольника, как показано на рисунке. Последовательные положения одной из его вершин в моменты, когда $n$-угольники имеют общую сторону, образуют замкнутую ломаную $\kappa$.

Докажите, что $\kappa$ ограничивает площадь, равную $6A - 2B$, где $A$, $B$ – площади правильных $n$-угольников с единичными стороной и радиусом описанной окружности соответственно.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 38]      



Задача 117014

Темы:   [ Разрезания (прочее) ]
[ Правило произведения ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3+
Классы: 5,6,7

Для игры в шляпу Надя хочет разрезать лист бумаги на 48 одинаковых прямоугольников. Какое наименьшее количество разрезов ей придется сделать, если любые куски бумаги можно перекладывать, но нельзя сгибать, а Надя способна резать одновременно сколько угодно слоёв бумаги? (Каждый разрез – прямая линия от края до края куска.)

Прислать комментарий     Решение

Задача 98618

Темы:   [ Разрезания (прочее) ]
[ Планарные графы. Формула Эйлера ]
Сложность: 4-
Классы: 8,9

Какое наибольшее число клеток доски 9×9 можно разрезать по обеим диагоналям, чтобы при этом доска не распалась на несколько частей?

Прислать комментарий     Решение

Задача 66384

Темы:   [ Разрезания (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 7,8,9

Фигурки из четырёх клеток называются тет- рамино. Они бывают пяти видов (см. рис.). Существует ли такая фигура, что при любом выборе вида тетрамино эту фигуру можно составить, используя тетраминошки только выбранного вида? (Переворачивать тетраминошки можно.)

Прислать комментарий     Решение

Задача 66681

Темы:   [ Разрезания (прочее) ]
[ Правильные многоугольники ]
[ Перегруппировка площадей ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 4
Классы: 8,9,10,11

Автор: Белухов Н.

Правильный $n$-угольник со стороной 1 вращается вокруг другого такого же $n$-угольника, как показано на рисунке. Последовательные положения одной из его вершин в моменты, когда $n$-угольники имеют общую сторону, образуют замкнутую ломаную $\kappa$.

Докажите, что $\kappa$ ограничивает площадь, равную $6A - 2B$, где $A$, $B$ – площади правильных $n$-угольников с единичными стороной и радиусом описанной окружности соответственно.

Прислать комментарий     Решение

Задача 76539

Темы:   [ Разрезания (прочее) ]
[ Пятиугольники ]
Сложность: 4
Классы: 8,9

Дан выпуклый пятиугольник ABCDE. Сторонами, противоположными вершинам A, B, C, D, E, мы называем соответственно отрезки CD, DE, EA, AB, BC. Докажите, что если произвольную точку M, лежащую внутри пятиугольника, соединить прямыми со всеми его вершинами, то из этих прямых либо ровно одна, либо ровно три, либо ровно пять пересекают стороны пятиугольника, противоположные вершинам, через которые они проходят.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 38]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .