ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В прямоугольник $ABCD$ вписывают равнобедренные треугольники с заданным углом α при вершине, противолежащей основанию, так, что эта вершина лежит на отрезке $BC$, а концы основания – на отрезках $AB$ и $CD$. Докажите, что середины оснований у всех таких треугольников совпадают.

   Решение

Задачи

Страница: << 91 92 93 94 95 96 97 >> [Всего задач: 1275]      



Задача 66103

Темы:   [ Невыпуклые многоугольники ]
[ Вписанный угол, опирающийся на диаметр ]
[ Примеры и контрпримеры. Конструкции ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 8,9,10

а) На каждой стороне десятиугольника (не обязательно выпуклого) как на диаметре построили окружность. Может ли оказаться, что все эти окружности имеют общую точку, не совпадающую ни с одной вершиной десятиугольника?
б) Решите ту же задачу для одиннадцатиугольника.

Прислать комментарий     Решение

Задача 66738

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9,10,11

В прямоугольник $ABCD$ вписывают равнобедренные треугольники с заданным углом α при вершине, противолежащей основанию, так, что эта вершина лежит на отрезке $BC$, а концы основания – на отрезках $AB$ и $CD$. Докажите, что середины оснований у всех таких треугольников совпадают.

Прислать комментарий     Решение

Задача 66853

Темы:   [ Вписанные и описанные многоугольники ]
[ Вписанный угол равен половине центрального ]
Сложность: 3+
Классы: 8,9,10,11

Существует ли вписанный в окружность $N$-угольник, у которого нет одинаковых по длине сторон, а все углы выражаются целым числом градусов, если
  а)  $N$ = 19;
  б)  $N$ = 20?

Прислать комментарий     Решение

Задача 66938

Темы:   [ Вспомогательные подобные треугольники ]
[ Вписанный угол равен половине центрального ]
Сложность: 3+
Классы: 8,9,10,11

Cерединный перпендикуляр к стороне $AC$ треугольника $ABC$ пересекает прямые $BC$, $AB$ в точках $A_{1}$ и $C_{1}$ соответственно. Точки $O$, $O_{1}$ – центры описанных окружностей треугольников $ABC$ и $A_{1}BC_{1}$ соответственно. Докажите, что $C_{1}O_1\perp AO$.
Прислать комментарий     Решение


Задача 97891

Темы:   [ Вписанный угол равен половине центрального ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Прямоугольные треугольники (прочее) ]
Сложность: 3+
Классы: 10,11

В треугольнике ABC проведены высота AH и биссектриса BE. Известно, что угол BEA равен 45°. Докажите, что угол EHC равен 45°.

Прислать комментарий     Решение

Страница: << 91 92 93 94 95 96 97 >> [Всего задач: 1275]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .