ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Дан вписанный в окружность пятиугольник. Докажите, что отношение его площади к сумме диагоналей не превосходит четверти радиуса окружности.

Вниз   Решение


В параллелограмме $ABCD$ точки $E$ и $F$ выбираются на сторонах $BC$ и $AD$ соответственно так, что $EF=ED=DC$. Пусть $M$ – середина $BE$, а $MD$ пересекает $EF$ в точке $G$. Докажите, что углы $EAC$ и $GBD$ равны.

Вверх   Решение

Задачи

Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 295]      



Задача 67522

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Инверсия помогает решить задачу ]
Сложность: 4+
Классы: 8,9,10,11

Дан треугольник $ABC$. Пусть $CL$ — его биссектриса, $W$ — середина дуги $BCA$, а $P$ — проекция ортоцентра на медиану, проведённую из вершины $C$. Окружность $CPW$ пересекает прямую, проходящую через $C$ и параллельную $AB$, в точке $Q$. Докажите, что $LC=LQ$.
Прислать комментарий     Решение


Задача 109014

Темы:   [ Наибольшая или наименьшая длина ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Средние пропорциональные в прямоугольном треугольнике ]
[ Построения с помощью вычислений ]
Сложность: 5
Классы: 8,9,10

Провести хорду данной окружности, параллельную данному диаметру, так, чтобы эта хорда и диаметр были основаниями трапеций с наибольшим периметром.
Прислать комментарий     Решение


Задача 116449

Темы:   [ Параллелограммы (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 2
Классы: 8,9,10

Автор: Фольклор

Окружность проходит через вершины В и D параллелограмма АВСD и пересекает его стороны АВ, ВС, СD и DA в точках M, N, P и K соответственно. Докажите, что  MK || NP.

Прислать комментарий     Решение

Задача 54246

Темы:   [ Проекции оснований, сторон или вершин трапеции ]
[ Теорема Пифагора (прямая и обратная) ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 2+
Классы: 8,9

Основания равнобедренной трапеции равны 10 и 24, боковая сторона равна 25. Найдите высоту трапеции.

Прислать комментарий     Решение

Задача 108028

Темы:   [ Перегруппировка площадей ]
[ Медиана делит площадь пополам ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 3-
Классы: 8,9

Точки M и N – середины противоположных сторон BC и AD выпуклого четырёхугольника ABCD. Диагональ AC проходит через середину отрезка MN. Докажите, что треугольники ABC и ACD равновелики.

Прислать комментарий     Решение

Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 295]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .