|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Внутри угла с вершиной M отмечена точка A. Из этой точки выпустили шар, который отразился от одной стороны угла в точке B, затем от другой стороны в точке C и вернулся в A ("угол падения" равен "углу отражения", см. рис.). Докажите, что центр O описанной окружности треугольника BCM лежит на прямой AM. (Шар считайте точкой.)
Известно, что трапеция ABCD — равнобедренная,
BC
В выпуклом пятиугольнике $ABCDE$ равны углы $CAB$, $BCA$, $ECD$, $DEC$ и $AEC$. Докажите, что середина $BD$ лежит на $CE$. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 92]
Выпуклый пятиугольник ABCDE таков, что AB || CD, BC || AD, AC || DE, CE ⊥ BC. Докажите, что EC – биссектриса угла BED.
Пять отрезков провели (не отрывая карандаша от бумаги) так, что получилась пятиугольная звезда, разделённая проведёнными отрезками на пять треугольников и пятиугольник. Оказалось, что все пять треугольников равны. Обязательно ли пятиугольник правильный?
В пятиугольнике проведены все диагонали. Какие семь углов между двумя диагоналями или между диагоналями и сторонами надо отметить, чтобы из равенства этих углов друг другу следовало, что пятиугольник – правильный?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 92] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|