ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

В вершинах A , B и C равностороннего треугольника ABC со стороной 1 восставлены к его плоскости перпендикуляры и на них взяты точки A1 , B1 и C1 , находящиеся по одну сторону от плоскости ABC , причём AA1 = 4 , BB1 = 5 и CC1 = 6 . Найдите объём многогранника ABCA1B1C1 .

Вниз   Решение


Листок календаря частично закрыт предыдущим оторванным листком (см. рисунок). Вершины A и B верхнего листка лежат на 

сторонах нижнего листка. Четвёртая вершина нижнего листка не видна  — она закрыта верхним листком. Верхний и нижний листки, естественно, равны между собой. Какая часть нижнего листка больше  — закрытая или открытая?

ВверхВниз   Решение


Сфера единичного радиуса касается всех ребер некоторой треугольной призмы. Чему может быть равен объем этой призмы? Ответ округлите до сотых.

ВверхВниз   Решение


Докажите, что не существует на плоскости четырех точек A, B, C и D таких, что все треугольники ABC, BCD, CDA, DAB остроугольные.

ВверхВниз   Решение


На острове проживают 1234 жителя, каждый из которых либо рыцарь (который всегда говорит правду) либо лжец (который всегда лжёт). Однажды все жители острова разбились на пары, и каждый про своего соседа по паре сказал: "Он – рыцарь!", либо "Он – лжец!". Могло ли в итоге оказаться, что тех и других фраз произнесено поровну?

ВверхВниз   Решение


Докажите для положительных значений переменных неравенство  .

ВверхВниз   Решение


Высота правильной треугольной призмы ABCA1B1C1 в 4 раза больше ребра основания. Точка D – середина ребра A1B1 , точки E и F расположены на отрезках AD и CB1 соответственно, причём AE = AD , CF=CB1 . Найдите угол между прямой EF и плоскостью, проходящей через ребро BB1 и середину ребра AC .

ВверхВниз   Решение


Все двугранные углы некоторого трёхгранного угла – острые. Докажите, что все его плоские углы – также острые.

ВверхВниз   Решение


Докажите, что плоскость, пересекающая боковую поверхность правильной 2n -угольной призмы, но не пересекающая её оснований, делит ось призмы, её боковую поверхность и объём в одном и том же отношении.

ВверхВниз   Решение


Для данного многочлена P(x) опишем способ, который позволяет построить многочлен R(x), который имеет те же корни, что и P(x), но все кратности 1. Положим  Q(x) = (P(x), P'(x))  и  R(x) = P(x)Q–1(x).  Докажите, что
  а) все корни многочлена P(x) будут корнями R(x);
  б) многочлен R(x) не имеет кратных корней.

ВверхВниз   Решение


Лабиринт для мышей (см. рисунок) представляет собой квадрат 5 × 5 метров, мыши могут бегать только по дорожкам. На двух перекрёстках положили по одинаковому куску сыра (обозначены крестиками). На другом перекрёстке сидит мышка (обозначена кружочком). Она чует, где сыр, но до обоих кусочков ей нужно пробежать одинаковое расстояние. Поэтому она не знает, какой кусочек выбрать, и задумчиво сидит на месте.

а) Отметьте ещё пять перекрёстков, где могла бы задумчиво сидеть мышка (откуда до обоих кусочков сыра ей нужно пробежать одинаковое расстояние).

б) Придумайте, на каких двух перекрёстках можно положить по куску сыра так, чтобы подходящих для задумчивой мышки перекрёстков оказалось как можно больше. (Доказательство максимальности от участников не требовалось)

Вверх   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 1041]      



Задача 66846

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Числовые таблицы и их свойства ]
Сложность: 3
Классы: 8,9,10,11

Можно ли в каждую клетку таблицы 40×41 записать по целому числу так, чтобы число в каждой клетке равнялось количеству тех соседних с ней по стороне клеток, в которых написано такое же число?

Прислать комментарий     Решение

Задача 66858

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Графики и ГМТ на координатной плоскости ]
[ Квадратный трехчлен (прочее) ]
Сложность: 3
Классы: 8,9,10,11

На плоскости даны две параболы:  $y = x^2$  и  $y = x^2 - 1$.  Пусть $U$ – множество всех точек плоскости, лежащих между параболами (включая точки на самих параболах). Существует ли отрезок длины более $10^6$, целиком содержащийся в $U$?

Прислать комментарий     Решение

Задача 66890

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Треугольники (прочее) ]
Сложность: 3
Классы: 8,9,10

В треугольнике $ABC$ провели высоты $AX$ и $BZ$, а также биссектрисы $AY$ и $BT$. Известно, что углы $XAY$ и $ZBT$ равны. Обязательно ли треугольник $ABC$ равнобедренный?
Прислать комментарий     Решение


Задача 66892

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Правильный (равносторонний) треугольник ]
Сложность: 3
Классы: 8,9

а) Можно ли разрезать квадрат на 4 равнобедренных треугольника, среди которых нет равных?

б) А можно ли разрезать равносторонний треугольник на 4 равнобедренных треугольника, среди которых нет равных?

Прислать комментарий     Решение

Задача 66988

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 3
Классы: 6,7,8

Лабиринт для мышей (см. рисунок) представляет собой квадрат 5 × 5 метров, мыши могут бегать только по дорожкам. На двух перекрёстках положили по одинаковому куску сыра (обозначены крестиками). На другом перекрёстке сидит мышка (обозначена кружочком). Она чует, где сыр, но до обоих кусочков ей нужно пробежать одинаковое расстояние. Поэтому она не знает, какой кусочек выбрать, и задумчиво сидит на месте.

а) Отметьте ещё пять перекрёстков, где могла бы задумчиво сидеть мышка (откуда до обоих кусочков сыра ей нужно пробежать одинаковое расстояние).

б) Придумайте, на каких двух перекрёстках можно положить по куску сыра так, чтобы подходящих для задумчивой мышки перекрёстков оказалось как можно больше. (Доказательство максимальности от участников не требовалось)

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 1041]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .