ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Кноп К.А.

Параллелограмм $ABCD$ разделён диагональю $BD$ на два равных треугольника. В треугольник $ABD$ вписан правильный шестиугольник так, что две его соседние стороны лежат на $AB$ и $AD$, а одна из вершин – на $BD$. В треугольник $CBD$ вписан правильный шестиугольник так, что две его соседние вершины лежат на $CB$ и $CD$, а одна из сторон – на $BD$. Какой из шестиугольников больше?

   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 23]      



Задача 116647

Темы:   [ Параллелограммы (прочее) ]
[ Вписанные и описанные окружности ]
[ Ортоцентр и ортотреугольник ]
[ Вписанный угол равен половине центрального ]
[ Симметрия помогает решить задачу ]
[ Вспомогательные подобные треугольники ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 4-
Классы: 9,10,11

На стороне BC параллелограмма ABCD  (∠A < 90°)  отмечена точка T так, что треугольник ATD – остроугольный. Пусть O1, O2 и O3 – центры описанных окружностей треугольников ABT, DAT и CDT соответственно (см. рисунок).

Докажите, что ортоцентр треугольника O1O2O3 лежит на прямой AD.

Прислать комментарий     Решение

Задача 67196

Темы:   [ Параллелограммы (прочее) ]
[ Вписанные и описанные окружности ]
[ Перенос помогает решить задачу ]
Сложность: 4
Классы: 10,11

Пусть $ABCD$ — параллелограмм, отличный от прямоугольника, а точка $P$ выбрана внутри него так, что описанные окружности треугольников $PAB$ и $PCD$ имеют общую хорду, перпендикулярную $AD$. Докажите, что радиусы данных окружностей равны.
Прислать комментарий     Решение


Задача 116675

Темы:   [ Параллелограммы (прочее) ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Конкуррентность высот. Углы между высотами. ]
[ Вспомогательные равные треугольники ]
[ Вписанные и описанные окружности ]
[ Медиана, проведенная к гипотенузе ]
[ Вписанный угол, опирающийся на диаметр ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 4
Классы: 7,8,9

В параллелограмме ABCD опустили перпендикуляр BH на сторону AD. На отрезке BH отметили точку M, равноудалённую от точек C и D. Пусть точка K – середина стороны AB. Докажите, что угол MKD прямой.

Прислать комментарий     Решение

Задача 116344

Темы:   [ Ортоцентр и ортотреугольник ]
[ Параллелограммы (прочее) ]
[ Вписанный угол (прочее) ]
[ Прямоугольные треугольники (прочее) ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3
Классы: 8,9,10

Треугольник BHC, где H – ортоцентр треугольника ABC, достроен до параллелограмма BHCD. Докажите, что ∠BAD = ∠CAH.

Прислать комментарий     Решение

Задача 67052

Темы:   [ Подобие ]
[ Параллелограммы (прочее) ]
[ Шестиугольники ]
[ Правильные многоугольники ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 4
Классы: 8,9,10,11

Автор: Кноп К.А.

Параллелограмм $ABCD$ разделён диагональю $BD$ на два равных треугольника. В треугольник $ABD$ вписан правильный шестиугольник так, что две его соседние стороны лежат на $AB$ и $AD$, а одна из вершин – на $BD$. В треугольник $CBD$ вписан правильный шестиугольник так, что две его соседние вершины лежат на $CB$ и $CD$, а одна из сторон – на $BD$. Какой из шестиугольников больше?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 23]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .