ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Три последовательных угла вписанного четырёхугольника относятся как 1:2:3. Найдите все углы четырёхугольника.

Вниз   Решение


Метод итераций. Для того, чтобы приближенно решить уравнение, допускающее запись f (x) = x, применяется метод итераций. Сначала выбирается некоторое число x0, а затем строится последовательность {xn} по правилу xn + 1 = f (xn) (n $ \geqslant$ 0). Докажите, что если эта последовательность имеет предел x* = $ \lim\limits_{n\to\infty}^{}$xn, и функция f (x) непрерывна, то этот предел является корнем исходного уравнения: f (x*) = x*.

ВверхВниз   Решение


Найдите косинус угла при основании равнобедренного треугольника, если точка пересечения его высот лежит на вписанной в треугольник окружности.

ВверхВниз   Решение


Существует ли на координатной плоскости точка, относительно которой симметричен график функции $f(x)=\frac{1}{2^x+1}$?

ВверхВниз   Решение


Точки A, B и C расположены на одной прямой. Через точку B проходит некоторая прямая. Пусть M - произвольная точка на этой прямой. Докажите, что расстояние между центрами окружностей, описанных около треугольников ABM и CBM не зависит от положения точки M. Найдите это расстояние, если AC = a, $ \angle$MBC = $ \alpha$.

ВверхВниз   Решение


Расстояние между центрами окружностей больше суммы их радиусов.
Докажите, что середины отрезков четырёх общих касательных этих окружностей лежат на одной прямой.

ВверхВниз   Решение


Дан вписанный четырехугольник $ABCD$. Пусть $E=AC\cap BD$, $F=AD\cap BC$. Биссектрисы углов $AFB$ и $AEB$ пересекают $CD$ в точках $X, Y$. Докажите, что точки $A, B, X, Y$ лежат на одной окружности.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 519]      



Задача 115571

Темы:   [ Вспомогательные подобные треугольники ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9

Точки M и N – середины сторон соответственно BC и CD параллелограмма ABCD. Отрезки AM и BN пересекаются в точке O.
Найдите отношение  MO : OA.

Прислать комментарий     Решение

Задача 115578

Темы:   [ Вспомогательные подобные треугольники ]
[ Признаки подобия ]
Сложность: 3
Классы: 8,9

На стороне AB треугольника ABC отмечена точка D, причём  ∠BCD = ∠A.  Известно, что  BC = a,  AC = b,  AB = c.  Найдите CD.

Прислать комментарий     Решение

Задача 115911

Темы:   [ Вспомогательные подобные треугольники ]
[ Трапеции (прочее) ]
Сложность: 3
Классы: 8,9

В трапеции ABCD боковая сторона AB перпендикулярна основаниям AD и BC, диагонали трапеции пересекаются в точке E, F – основание перпендикуляра, опущенного из точки E на сторону AB. Известно, что  ∠DFE = α.  Найдите ∠CFE.

Прислать комментарий     Решение

Задача 66977

Темы:   [ Вспомогательные подобные треугольники ]
[ Изогональное сопряжение ]
[ Теорема синусов ]
[ Отношение, в котором биссектриса делит сторону ]
[ Теоремы Чевы и Менелая ]
Сложность: 3
Классы: 9,10,11

В треугольнике $ABC$ $(\angle C=90^{\circ})$, $CH$ – высота; $HA_{1}, HB_{1}$ – биссектрисы углов $\angle CHB, \angle AHC$ соответственно; $E, F$ – середины отрезков $HB_{1}$ и $HA_{1}$ соответственно. Докажите, что прямые $AE$ и $BF$ пересекаются на биссектрисе угла $ACB$.
Прислать комментарий     Решение


Задача 67101

Темы:   [ Вспомогательные подобные треугольники ]
[ Четыре точки, лежащие на одной окружности ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 3
Классы: 8,9,10,11

Дан вписанный четырехугольник $ABCD$. Пусть $E=AC\cap BD$, $F=AD\cap BC$. Биссектрисы углов $AFB$ и $AEB$ пересекают $CD$ в точках $X, Y$. Докажите, что точки $A, B, X, Y$ лежат на одной окружности.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 519]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .