ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В окружности $\Omega $ хорды $A_1A_2$, $A_3A_4$, $A_5A_6$ пересекаются в точке $O$. Пусть $B_i$ – вторая точка пересечения окружности $\Omega$ с окружностью, построенной на отрезке $OA_i$ как на диаметре. Докажите, что хорды $B_1B_2$, $B_3B_4$, $B_5B_6$ пересекаются в одной точке.

   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 136]      



Задача 108129

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Ортогональная (прямоугольная) проекция ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 4+
Классы: 8,9

В неравнобедреном треугольнике ABC точка I – центр вписанной окружности, I' – центр окружности, касающейся стороны AB и продолжений сторон CB и CA; L и L' – точки, в которых сторона AB касается этих окружностей.
Докажите, что прямые IL', I'L и высота CH треугольника ABC пересекаются в одной точке.

Прислать комментарий     Решение

Задача 67102

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Изогональное сопряжение ]
[ Теорема Паскаля ]
Сложность: 4+
Классы: 9,10,11

В треугольнике $ABC$ выбрана точка $P$. Лучи с началом в точке $P$, пересекающие под прямым углом стороны $BC$, $AC$, $AB$, пересекают описанную окружность в точках $A_1$, $B_1$, $C_1$ соответственно. Оказалось, что прямые $AA_1$, $BB_1$ и $CC_1$ пересекаются в одной точке $Q$. Докажите, что все такие прямые $PQ$ пересекаются в одной точке.
Прислать комментарий     Решение


Задача 67107

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Инверсия помогает решить задачу ]
[ Радикальная ось ]
Сложность: 4+
Классы: 9,10,11

В окружности $\Omega $ хорды $A_1A_2$, $A_3A_4$, $A_5A_6$ пересекаются в точке $O$. Пусть $B_i$ – вторая точка пересечения окружности $\Omega$ с окружностью, построенной на отрезке $OA_i$ как на диаметре. Докажите, что хорды $B_1B_2$, $B_3B_4$, $B_5B_6$ пересекаются в одной точке.
Прислать комментарий     Решение


Задача 108138

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Гомотетия помогает решить задачу ]
[ Вневписанные окружности ]
[ Ортоцентр и ортотреугольник ]
[ Центральная симметрия помогает решить задачу ]
[ Конкуррентность высот. Углы между высотами. ]
Сложность: 5-
Классы: 9,10,11

Пусть A' – точка касания вневписанной окружности треугольника ABC со стороной BC. Прямая a проходит через точку A' и параллельна биссектрисе внутреннего угла A. Аналогично строятся прямые b и c. Докажите, что прямые a, b и c пересекаются в одной точке.

Прислать комментарий     Решение

Задача 66659

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 5
Классы: 10,11

На сторонах $AB,BC,CA$ треугольника $ABC$ выбраны точки $C_1,A_1,B_1$ так, что отрезки $AA_1,BB_1,CC_1$ пересекаются в одной точке. Лучи $B_1A_1$ и $B_1C1$ пересекают описанную окружность в точках $A_2$ и $C_2$. Докажите, что точки $A,C,$ точка пересечения $A_2C_2$ с $BB_1$ и середина $A_2C_2$ лежат на одной окружности.
Прислать комментарий     Решение


Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 136]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .