ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Русских И.

На острове живут красные, синие и зелёные хамелеоны. 35 хамелеонов встали в круг. Через минуту все они одновременно поменяли цвет, каждый на цвет одного из своих соседей. Ещё через минуту снова все одновременно поменяли цвета на цвет одного из своих соседей. Могло ли оказаться, что каждый хамелеон побывал и красным, и синим, и зелёным?

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 398]      



Задача 65922

Темы:   [ Доказательство от противного ]
[ Принцип крайнего (прочее) ]
[ Симметрия помогает решить задачу ]
Сложность: 4
Классы: 10,11

Каждое целое число на координатной прямой покрашено в один из двух цветов – белый или чёрный, причём числа 2016 и 2017 покрашены разными цветами. Обязательно ли найдутся три одинаково покрашенных целых числа, сумма которых равна нулю?

Прислать комментарий     Решение

Задача 67286

Темы:   [ Доказательство от противного ]
[ Инварианты ]
Сложность: 4
Классы: 6,7,8

Автор: Русских И.

На острове живут красные, синие и зелёные хамелеоны. 35 хамелеонов встали в круг. Через минуту все они одновременно поменяли цвет, каждый на цвет одного из своих соседей. Ещё через минуту снова все одновременно поменяли цвета на цвет одного из своих соседей. Могло ли оказаться, что каждый хамелеон побывал и красным, и синим, и зелёным?
Прислать комментарий     Решение


Задача 97765

Темы:   [ Доказательство от противного ]
[ Классические неравенства (прочее) ]
[ Геометрические неравенства (прочее) ]
Сложность: 4
Классы: 8,9,10

Авторы: Анджанс А., Берзиньш А.

В квадрате со стороной 1 проведено конечное количество отрезков, параллельных его сторонам. Отрезки могут пересекать друг друга. Сумма длин проведенных отрезков равна 18. Докажите, что среди частей, на которые разбивается квадрат этими отрезками, найдётся такая, площадь которой не меньше 0,01.

Прислать комментарий     Решение

Задача 116302

Темы:   [ Доказательство от противного ]
[ Правильный (равносторонний) треугольник ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 4
Классы: 8,9

Могут ли три точки с целыми координатами быть вершинами равностороннего треугольника?
Прислать комментарий     Решение


Задача 116582

Темы:   [ Доказательство от противного ]
[ Разложение на множители ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4
Классы: 8,9,10

Автор: Голованов А.С.

Целые числа a и b таковы, что при любых натуральных m и n число  am² + bn²  является точным квадратом. Докажите, что  ab = 0.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 398]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .