ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Найдите все шестизначные числа, которые уменьшаются втрое при перенесении последней цифры на первое место.
Докажите, что отрезок, соединяющий вершину равнобедренного треугольника с точкой, лежащей на основании, не больше боковой стороны треугольника.
Окружности с центрами O1 и O2 пересекаются
в точках A и B . Известно, что В треугольнике две высоты не меньше сторон, на которые они опущены. Найдите углы треугольника. Диагонали ромба равны 24 и 70. Найдите сторону ромба. Через вершины A и B треугольника ABC проведены
две параллельные прямые, а прямые m и n симметричны
им относительно биссектрис соответствующих углов.
Докажите, что точка пересечения прямых m и n лежит на
описанной окружности треугольника ABC.
Для каждого непрямоугольного треугольника T обозначим через T1 треугольник, вершинами которого служат основания высот треугольника T; через T2 – треугольник, вершинами которого служат основания высот треугольника T1; аналогично определим треугольники T3, T4 и так далее. Каким должен быть треугольник T, чтобы |
Страница: << 1 2 [Всего задач: 10]
Пусть движение плоскости переводит фигуру F в фигуру F'. Для каждой пары
соответственных точек A и A' рассмотрим середину X отрезка AA'.
Докажите, что либо все точки X совпадают, либо все они лежат на одной прямой,
либо образуют фигуру, подобную F.
Из бумаги вырезали два одинаковых треугольника ABC и A'B'C' и положили их на стол, перевернув при этом один из треугольников.
Круглый пирог режут следующим образом. Вырезают сектор с углом
Четырехугольник ABCD вписан в окружность с центром O . Точки C' , D' симметричны ортоцентрам треугольников ABD и ABC относительно O . Докажите, что если прямые BD и BD' симметричны относительно биссектрисы угла B , то прямые AC и AC' симметричны относительно биссектрисы угла A .
Для каждого непрямоугольного треугольника T обозначим через T1 треугольник, вершинами которого служат основания высот треугольника T; через T2 – треугольник, вершинами которого служат основания высот треугольника T1; аналогично определим треугольники T3, T4 и так далее. Каким должен быть треугольник T, чтобы
Страница: << 1 2 [Всего задач: 10]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке