ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
Продолжения биссектрис остроугольного треугольника ABC пересекают описанную окружность в точках A1, B1 и C1 соответственно. Докажите, что высоты треугольника A1B1C1 лежат на прямых AA1, BB1иCC1.
Внутри угла с вершиной O взята некоторая точка M. Луч OM образует со сторонами угла углы, один из которого больше другого на 10o; A и B — проекции точки M на стороны угла. Найдите угол между прямыми AB и OM.
В треугольнике ABC угол B — прямой, величина угол C равен
Две окружности с центрами O1 и O2 пересекаются в точках A и B. Первая окружность проходит через центр второй и её хорда BD пересекает вторую окружность в точке C и делит дугу ACB в отношении AC : CB = n. В каком отношении точка D делит дугу ADB?
Даны треугольник ABC (AB > AC) и описанная около него окружность. Постройте циркулем и линейкой середину дуги BC (не содержащей вершину A), проведя не более двух линий. Пусть $M$ – середина гипотенузы $AB$ прямоугольного треугольника $ABC$. Окружность, проходящая через $C$ и $M$, пересекает прямые $BC$ и $AC$ в точках $P$ и $Q$ соответственно. Пусть $c_1, c_2$ – окружности с центрами $P$, $Q$ и радиусами $BP$, $AQ$ соответственно. Докажите, что $c_1$, $c_2$ и описанная окружность треугольника $ABC$ проходят через одну точку.
Даны две точки A и B. Найдите геометрическое место точек, каждая из которых симметрична точке A относительно некоторой прямой, проходящей через точку B.
ABCD - вписанный четырехугольник, диагонали которого перпендикулярны. O - центр описанной окружности четырехугольника ABCD.
Найдите геометрическое место точек, из которых данный отрезок виден под данным углом.
Окружность $\omega$ касается прямых $a$ и $b$ в точках $A$ и $B$ соответственно. Произвольная касательная к $\omega$ пересекает $a$ и $b$ в точках $X$ и $Y$ соответственно. Точки $X'$ и $Y'$ симметричны точкам $X$ и $Y$ относительно $A$ и $B$ соответственно. Найдите геометрическое место проекций центра окружности на $X'Y'$.
Найдите геометрическое место середин хорд данной окружности, проходящих через данную точку.
Продолжения боковых сторон $AB$ и $CD$ трапеции $ABCD$ ($AD > BC$) пересекаются в точке $P$. На отрезке $AD$ нашлась такая точка $Q$, что $BQ=CQ$. Докажите, что линия центров окружностей, описанных около треугольников $AQC$ и $BQD$, перпендикулярна прямой $PQ$.
Две окружности пересекаются в точках A и B. Через точку B проводится прямая, пересекающая вторично окружности в точках C и D, а затем через точки C и D проводятся касательные к этим окружностям. Докажите, что точки A, C, D и точка P пересечения касательных лежат на одной окружности.
В квадрате ABCD из точки D как из центра проведена внутри квадрата дуга через вершины A и C. На AD как на диаметре построена внутри квадрата полуокружность. Отрезок прямой, соединяющей произвольную точку P дуги AC с точкой D, пересекает полуокружность AD в точке K. Докажите, что длина отрезка PK равна расстоянию от точки P до стороны AB.
В треугольнике ABC известно, что AB = 20, AC = 24. Известно также, что вершина C, центр вписанного в треугольник ABC круга и точка пересечения биссектрисы угла A со стороной BC лежат на окружности, центр которой лежит на стороне AC. Найдите радиус описанной около треугольника ABC окружности.
AM — биссектриса треугольника ABC. Точка D принадлежит
стороне AC, причём
Стороны KN и LM трапеции KLMN параллельны, причём KN = 3, а угол M равен 120o. Прямые LM и MN являются касательными к окружности, описанной около треугольника KLN. Найдите площадь треугольника KLN.
За круглым столом сидят 2015 человек, каждый из них – либо рыцарь, либо лжец. Рыцари всегда говорят правду, лжецы всегда лгут. Им раздали по одной карточке, на каждой карточке написано по числу; при этом все числа на карточках различны. Посмотрев на карточки соседей, каждый из сидящих за столом сказал: "Мое число больше, чем у каждого из двух моих соседей". После этого k из сидящих сказали: "Мое число меньше, чем у каждого из двух моих соседей". При каком наибольшем k это могло случиться? Определить отношение двух чисел, если отношение их среднего арифметического к среднему геометрическому равно 25 : 24. |
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 168]
Определить отношение двух чисел, если отношение их среднего арифметического к среднему геометрическому равно 25 : 24.
Один путник шел первые полпути со скоростью 4 км/ч, а вторые полпути со скоростью 6 км/ч. Другой путник шел первую половину времени со скоростью со скоростью 4км/ч, а вторую половину времени со скоростью 6 км/ч. С какой постоянной скоростью должен был бы идти каждый из них, чтобы затратить на свое путешествие то же самое время?
Во время стоянки между двумя рейсами матросу исполнилось 20 лет. По этому случаю в кают-компании собрались все шесть членов команды.
Два совершенно одинаковых катера, имеющих одинаковую скорость в стоячей воде, проходят по двум различным рекам одинаковое расстояние (по течению) и возвращаются обратно (против течения). В какой реке на эту поездку потребуется больше времени: в реке с быстрым течением или в реке с медленным течением?
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 168]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке