Processing math: 23%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Через концы диаметра окружности проведены две хорды, пересекающиеся на окружности и равные 12 и 16. Найдите расстояния от центра окружности до этих хорд.

Вниз   Решение


Автор: Шатунов Л.

Дан выпуклый четырехугольник ABCD. Прямая lAC пересекает прямые AD,BC,AB,CD в точках X,Y,Z,T. Описанные окружности треугольников XYB и ZTB вторично пересекаются в точке R. Докажите, что R лежит на прямой BD.

ВверхВниз   Решение


Дан острый угол с вершиной A и точка E внутри него. Построить на сторонах угла точки B, C так, чтобы E была центром окружности Эйлера треугольника ABC.

ВверхВниз   Решение


Угол при основании равнобедренного треугольника равен $ \varphi$. Найдите отношение радиуса вписанной в данный треугольник окружности к радиусу описанной окружности.

ВверхВниз   Решение


Пусть h — наибольшая высота нетупоугольного треугольника. Докажите, что r + R $ \leq$ h.

ВверхВниз   Решение


Сторона AD параллелограмма ABCD разделена на n равных частей. Первая точка деления P соединена с вершиной B.
Доказать, что прямая BP отсекает на диагонали AC часть AQ, которая равна 1/n+1 части диагонали:  AQ = AC/n+1.

ВверхВниз   Решение


Во вписанном четырёхугольнике ABCD известны углы:  ∠DAB = α,  ∠ABC = β,  ∠BKC = γ,  где K – точка пересечения диагоналей. Найдите угол ACD.

ВверхВниз   Решение


Многочлен  P(x,y)  таков, что для всякого целого  n  каждый из многочленов  P(n, y)  и  P(x, n)  либо тождественно равен нулю, либо имеет степень не выше n.
Может ли многочлен  P(x, x) иметь нечётную степень?

ВверхВниз   Решение


Из вершины B произвольного треугольника ABC проведены вне треугольника прямые BM и BN, так что  ∠ABM = ∠CBN.  Точки A' и C' симметричны точкам A и C относительно прямых BM и BN (соответственно). Доказать, что  AC' = A'C.

ВверхВниз   Решение


Найдите геометрическое место точек M, лежащих внутри ромба ABCD и обладающих тем свойством, что  ∠AMD + ∠BMC = 180°.

ВверхВниз   Решение


Пусть P(x) – многочлен степени  n ≥ 2  с неотрицательными коэффициентами, а a, b и c – длины сторон некоторого остроугольного треугольника.
Докажите, что числа    также являются длинами сторон некоторого остроугольного треугольника.

ВверхВниз   Решение


В плоскости даны две прямые. Найти геометрическое место точек, разность расстояний которых от этих прямых равна заданному отрезку.

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 85]      



Задача 67237

Темы:   [ ГМТ - прямая или отрезок ]
[ Связь величины угла с длиной дуги и хорды ]
[ Соображения непрерывности ]
Сложность: 4
Классы: 8,9,10,11

Даны две окружности \omega_1 и \omega_2, пересекающиеся в точке A, и прямая a. Пусть BC – произвольная хорда окружности \omega_2, параллельная a, а E и F – вторые точки пересечения прямых AB и AC с \omega_1. Найдите геометрическое место точек пересечения прямых BC и EF.
Прислать комментарий     Решение


Задача 67339

Темы:   [ ГМТ - прямая или отрезок ]
[ Поворотная гомотетия (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Автор: Шекера А.

Даны окружность \omega и точки A и B на ней. Пусть C – произвольная точка на одной из дуг AB этой окружности, CL – биссектриса треугольника ABC, окружность BCL пересекает AC в E, а CL пересекает BE в F. Найдите геометрическое место центров окружностей AFC.
Прислать комментарий     Решение


Задача 76468

Тема:   [ ГМТ - прямая или отрезок ]
Сложность: 4
Классы: 10,11

В плоскости даны две прямые. Найти геометрическое место точек, разность расстояний которых от этих прямых равна заданному отрезку.
Прислать комментарий     Решение


Задача 76509

Темы:   [ ГМТ - прямая или отрезок ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 10,11

Прямоугольный треугольник ABC движется по плоскости так, что его вершины B и C скользят по сторонам данного прямого угла. Доказать, что множеством точек A является отрезок и найти его длину.
Прислать комментарий     Решение


Задача 111362

Темы:   [ ГМТ - прямая или отрезок ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4
Классы: 8,9

Найдите геометрическое место центров прямоугольников, вписанных в треугольник ABC так, что одна сторона прямоугольника лежит на наибольшей стороне AB , а концы противоположной стороны – на сторонах AC и BC .
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 85]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .