ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Найти все числа, которые в 12 раз больше суммы своих цифр. Прямоугольники P и Q равновелики, но у P диагональ больше. Двумя копиями P можно накрыть Q. Докажите, что двумя копиями Q можно накрыть P. а) Доказать, что для любых положительных чисел x1, x2, ..., xk (k > 3) выполняется неравенство: б) Доказать, что это неравенство ни для какого k > 3 нельзя усилить, то есть доказать, что для каждого фиксированного k нельзя заменить двойку в правой части на большее число так, чтобы полученное неравенство было справедливо для любого набора из k положительных чисел. Из полного 100-вершинного графа выкинули 98 рёбер. Доказать, что он остался связным. В мешке изюма содержится 2001 изюминка общим весом 1001 г, причём ни одна изюминка не весит больше 1,002 г. В трапецию ABCD можно вписать окружность и около неё можно описать окружность. От трапеции остались: вершина A, центр вписанной окружности I, описанная окружность ω и ее центр O. Восстановите трапецию с помощью одной лишь линейки. На конференции присутствуют 50 учёных, каждый из которых знаком по крайней мере с 25 участниками конференции. Доказать, что квадрат натурального числа не может оканчиваться на две нечётные цифры. Три равные окружности касаются друг друга. Из произвольной точки окружности, касающейся внутренним образом этих окружностей, проведены касательные к ним. Доказать, что сумма длин двух касательных равна длине третьей. Пусть R1, R2 и R3 – радиусы трёх окружностей, каждая из которых проходит через вершину треугольника и касается противолежащей стороны. Какое слагаемое в разложении (1 + Докажите, что (k, j, i) ↔ (k – 1, j + 1, i), (k, j, i) ↔ (k – 1, j, i + 1), (k, j, i) ↔ (k, j – 1, i + 1).
(Эти операции можно представлять себе как сбрасывание одного кирпича вниз на диаграмме Юнга. Про диаграммы Юнга смотри здесь.)
Даны две окружности радиусов R и r, одина вне другой. К ним проведены две общие внешние касательные. Найдите их длину (между точками касания), если их продолжения образуют прямой угол. (R > r).
Решить в целых числах уравнение x + y = x² – xy + y². |
Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 258]
Решить в целых числах уравнение x + y = x² – xy + y².
Что больше 200! или 100200?
Найти все числа, которые в 12 раз больше суммы своих цифр.
Доказать, что
На гипотенузе AB прямоугольного треугольника ABC взята точка X, M и N – её проекции на катеты AC и BC.
Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 258]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке