Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 16 задач
Версия для печати
Убрать все задачи

Автор: Струков С.

В остроугольном треугольнике ABC проведены высоты BD и CE. Из вершин B и C на прямую ED опущены перпендикуляры BF и CG. Докажите, что EF = DG.

Вниз   Решение


Докажите, что существует треугольник, стороны которого равны и параллельны медианам данного треугольника.

ВверхВниз   Решение


Вписанная окружность треугольника A1A2A3 касается сторон A2A3, A3A1 и A1A2 в точках S1, S2 и S3 соответственно. Пусть O1, O2 и O3 – центры вписанных окружностей треугольников A1S2S3, A2S3S1 и A3S1S2 соответственно. Докажите, что прямые O1S1, O2S2 и O3S3 пересекаются в одной точке.

ВверхВниз   Решение


В треугольнике ABC угол A прямой, M – середина BC, AH – высота. Прямая, проходящая через точку M перпендикулярно AC, вторично пересекает описанную окружность треугольника AMC в точке P. Докажите, что отрезок BP делит отрезок AH пополам.

ВверхВниз   Решение


В координатном пространстве провели все плоскости с уравнениями  x ± y ± z = n  (при всех целых n). Они разбили пространство на тетраэдры и октаэдры. Пусть точка  (x0, y0, z0)  с рациональными координатами не лежит ни в одной проведённой плоскости. Докажите, что найдётся натуральное k, при котором точка  (kx0, ky0, kz0)  лежит строго внутри некоторого октаэдра разбиения.

ВверхВниз   Решение


Точка К – середина гипотенузы АВ прямоугольного равнобедренного треугольника ABC. Точки L и М выбраны на катетах ВС и АС соответственно так, что  BL = СМ.  Докажите, что треугольник LMK – также прямоугольный равнобедренный.

ВверхВниз   Решение


Окружность, вписанная в прямоугольный треугольник ABC  (∠ABC = 90°),  касается сторон AB, BC, AC в точках C1, A1, B1 соответственно. Вневписанная окружность касается стороны BC в точке A2. A0 – центр окружности, описанной около треугольника A1A2B1; аналогично определяется точка C0. Найдите угол A0BC0.

ВверхВниз   Решение


В прямоугольный треугольник вписан квадрат так, что одна из его сторон находится на гипотенузе. Боковые отрезки гипотенузы равны m и n. Найдите площадь квадрата.

ВверхВниз   Решение


Даны окружность и точка A. Найдите геометрическое место середин хорд, высекаемых данной окружностью на всевозможных прямых, проходящих через точку A.

ВверхВниз   Решение


Окружность, построенная на стороне AD параллелограмма ABCD как на диаметре, проходит через середину диагонали AC и пересекает сторону AB в точке M. Найдите отношение AM : AB, если AC = 3BD.

ВверхВниз   Решение


При каких натуральных a существуют такие натуральные числа x и y, что (x + y)2 + 3x + y = 2a?

ВверхВниз   Решение


В выпуклом четырёхугольнике ABCD биссектриса угла BAD пересекает сторону BC в точке M, а биссектриса угла ABC пересекает сторону AD в точке N, причём BM = MC, 2AN = ND и AM перпендикулярно BN. Найдите стороны и площадь четырёхугольника ABCD, если его периметр равен 14, а угол BAD равен 60o.

ВверхВниз   Решение


Смешарики живут на берегах пруда в форме равностороннего треугольника со стороной 600 м. Крош и Бараш живут на одном берегу в 300 м друг от друга. Летом Лосяшу до Кроша идти 900 м, Барашу до Нюши – тоже 900 м. Докажите, что зимой, когда пруд замёрзнет и можно будет ходить прямо по льду, Лосяшу до Кроша снова будет идти столько же метров, сколько Барашу до Нюши.

ВверхВниз   Решение


Автор: Фомин С.В.

В кооперативе из 11 человек имеется партячейка. На каждом собрании ячейки происходит либо приём одного члена в партию, либо исключение из партии одного человека. В партячейке не может быть меньше трёх человек. Возвращаться к какому-либо из прежних составов партячейки запрещено уставом. Может ли к какому-то моменту оказаться, что все варианты состава ячейки реализованы?

 

ВверхВниз   Решение


Треугольная таблица строится по следующему правилу: в верхней её строке написано одно только натуральное число a > 1, а далее под каждым числом k слева пишем число k2 , а справа — число k + 1. Докажите, что в каждой строке таблицы все числа разные.

Например, при a = 2 вторая строка состоит из чисел 4 и 3, третья — из чисел 16, 5, 9 и 4, четвёртая — из чисел 256, 17, 25, 6, 81, 10, 16 и 5.

ВверхВниз   Решение


Дана плоскость P и две точки A и B по разные стороны от неё. Построить сферу, проходящую через эти точки, высекающую из P наименьший круг.

Вверх   Решение

Задачи

Страница: << 52 53 54 55 56 57 58 >> [Всего задач: 401]      



Задача 55567

Темы:   [ Симметрия помогает решить задачу ]
[ Диаметр, основные свойства ]
Сложность: 4+
Классы: 8,9

Бумажная прямоугольная полоска помещается внутри данного круга. Полоску согнули (не обязательно пополам). Докажите, что после сгибания полоску можно также разместить в этом круге.

Прислать комментарий     Решение


Задача 55696

Темы:   [ Параллельный перенос. Построения и геометрические места точек ]
[ Диаметр, хорды и секущие ]
[ Перенос помогает решить задачу ]
Сложность: 4+
Классы: 8,9

С помощью циркуля и линейки параллельно данной прямой проведите прямую, на которой две данные окружности высекали бы хорды, сумма (или разность) длин которых имела бы заданную величину a.

Прислать комментарий     Решение


Задача 78582

Темы:   [ Задачи на максимум и минимум (прочее) ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Неравенство Коши ]
[ Построения в пространстве (прочее) ]
Сложность: 4+
Классы: 10,11

Дана плоскость P и две точки A и B по разные стороны от неё. Построить сферу, проходящую через эти точки, высекающую из P наименьший круг.

Прислать комментарий     Решение

Задача 111871

Темы:   [ Окружность, вписанная в угол ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вспомогательная окружность ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 4+
Классы: 9,10

Окружность ω с центром O вписана в угол BAC и касается его сторон в точках B и C. Внутри угла BAC выбрана точка Q. На отрезке AQ нашлась такая точка P, что  AQOP.  Прямая OP пересекает описанные окружности ω1 и ω2 треугольников BPQ и CPQ, вторично в точках M и N. Докажите, что  OM = ON.

Прислать комментарий     Решение

Задача 115413

Темы:   [ Биссектриса делит дугу пополам ]
[ Диаметр, основные свойства ]
[ Свойства симметрий и осей симметрии ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вспомогательная окружность ]
Сложность: 4+
Классы: 8,9

В треугольнике  ABC проведена биссектриса  BD (точка  D лежит на отрезке  AC ). Прямая  BD пересекает окружность  Ω , описанную около треугольника  ABC , в точках  B и  E . Окружность  ω , построенная на отрезке  DE как на диаметре, пересекает окружность  Ω в точках  E и  F . Докажите, что прямая, симметричная прямой  BF относительно прямой  BD , содержит медиану треугольника  ABC .
Прислать комментарий     Решение


Страница: << 52 53 54 55 56 57 58 >> [Всего задач: 401]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .