ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
Диагональ BD трапеции ABCD равна m, а боковая сторона AD равна n. Найдите основание CD, если известно, что основание, диагональ и боковая сторона трапеции, выходящие из вершины C, равны между собой.
Один квадрат вписан в окружность, а другой квадрат описан около той же окружности так, что его вершины лежат на продолжениях сторон первого (см. рисунок). Найдите угол между сторонами этих квадратов. Сколько различных целочисленных решений имеет неравенство |x| + |y| < 100?
В треугольнике ABC перпендикуляр, проходящий через середину
стороны AC, пересекает сторону BC в точке M, а перпендикуляр,
проходящий через сторону BC пересекает сторону AC в точке N.
Прямая MN перпендикулярна AB и
MN =
Через вершину A остроугольного треугольника ABC проведена прямая, параллельная стороне BC, равной a, и пересекающая окружности, построенные на сторонах AB и AC как на диаметрах, в точках M и N, отличных от A. Найдите MN. Точка D – центр описанной окружности остроугольного треугольника ABC. Окружность, проходящая через точки A, B и D, пересекает стороны AC и BC в точках M и N соответственно. Докажите, что описанные окружности треугольников ABD и MNC равны. Из шахматной доски со стороной а) 2n; б) 6n + 1 выброшена
одна клетка. Докажите, что оставшуюся часть доски можно
замостить плитками, изображенными на рис.
Точка M лежит на стороне AB треугольника ABC, AM = a, BM = b, CM = c, c < a, c < b. Дан остроугольный треугольник $ABC$. Точка $P$ выбрана так, что $AP=AB$ и $PB \parallel AC$. Точка $Q$ выбрана так, что $AQ=AC$ и $CQ \parallel AB$. Отрезки $CP$ и $BQ$ пересекаются в точке $X$. Докажите, что центр описанной окружности треугольника $ABC$ лежит на окружности $(PXQ)$. а) Докажите, что p² – 1 делится на 24, если p – простое число и p > 3. AA1 и BB1 – высоты остроугольного треугольника ABC. Докажите, что: Докажите, что число 11...1 (1986 единиц) имеет по крайней мере Пусть AB — основание трапеции ABCD. Доказать, что если AC + BC = AD + BD, то трапеция ABCD — равнобокая. |
Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 293]
В равнобедренной трапеции KLMN основание KN равно 9, основание LM равно 5. Точки P и Q лежат на диагонали LN, причём точка P расположена между точками L и Q, а отрезки KP и MQ перпендикулярны диагонали LN. Найдите площадь трапеции KLMN, если QN/LP = 5.
Дана полуокружность с диаметром AB. С помощью циркуля и линейки постройте хорду MN, параллельную AB, так, чтобы трапеция AMNB была описанной.
Равнобокая трапеция $ABCD$ с основаниями $AD$ и $BC$ вписана в окружность с центром $O$. Прямая $BO$ пересекает отрезок $AD$ в точке $E$. Пусть $O_1$ и $O_2$ — центры описанных окружностей треугольников $ABE$ и $DBE$ соответственно. Докажите, что точки $O_1, O_2, O, C$ лежат на одной окружности.
В трапецию $ABCD$ можно вписать окружность и около неё можно описать окружность. От трапеции остались: вершина $A$, центр вписанной окружности $I$, описанная окружность $\omega$ и ее центр $O$. Восстановите трапецию с помощью одной лишь линейки.
Пусть AB — основание трапеции ABCD. Доказать, что если AC + BC = AD + BD, то трапеция ABCD — равнобокая.
Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 293]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке