Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 133]
|
|
Сложность: 4- Классы: 9,10,11
|
Сумма модулей членов конечной арифметической прогрессии равна 250. Если все ее члены увеличить на 1 или все ее члены увеличить на 2, то в обоих случаях сумма модулей членов полученной прогрессии будет также равна 250. Какие значения при этих условиях может принимать величина
n2d, где
d - разность прогрессии, а
n - число ее членов?
|
|
Сложность: 4- Классы: 10,11
|
Найдите все возрастающие арифметические прогрессии с конечным числом членов, сумма которых равна 1, а каждый член имеет вид 1/k, где k натуральное.
|
|
Сложность: 4- Классы: 10,11
|
Имеется бесконечная арифметическая прогрессия натуральных чисел с ненулевой разностью. Из каждого её члена извлекли квадратный корень и, если получилось нецелое число, округлили до ближайшего целого. Может ли быть, что все округления были в одну сторону?
|
|
Сложность: 4- Классы: 10,11
|
Дана бесконечно возрастающая арифметическая прогрессия. Первые её несколько членов сложили и сумму объявили первым членом новой последовательности, затем сложили следующие несколько членов исходной прогрессии и сумму объявили вторым членом новой последовательности, и так далее. Могла ли новая последовательность оказаться геометрической прогрессией?
|
|
Сложность: 4- Классы: 8,9,10
|
Доказать, что те натуральные K, для которых KK + 1 делится на 30, образуют арифметическую прогрессию. Найти её.
Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 133]