Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 136]
[Точка Жергона]
|
|
Сложность: 4- Классы: 8,9
|
В треугольник вписана окружность. Точки касания соединены с противоположными вершинами треугольника.
Докажите, что полученные отрезки пересекаются в одной точке (точка Жергона).
а) Дан выпуклый многоугольник A1A2...An. На стороне A1A2 взяты точки B1 и D2, на стороне A2A3 – точки B2 и D3, ..., на стороне AnA1 – точки Bn и D1 так, что если построить параллелограммы A1B1C1D1, A2B2C2D2, ..., AnBnCnDn, то прямые A1C1, A2C2, ..., AnCn пересекутся в одной точке. Докажите равенство A1B1·A2B2·...·AnBn = A1D1·A2D2·...·AnDn.
б) Докажите, что для треугольника верно и обратное утверждение: если на стороне
A1A2 выбраны точки
B1 и
D2, на стороне
A2A3 – точки
B2 и
D3, а на стороне
A3A1 – точки
B3 и
D1 так, что
A1B1·
A2B2·
A3B3 =
A1D1·
A2D2·
A3D3, то, построив параллелограммы
A1B1C1D1,
A2B2C2D2 и
A3B3C3D3, получим прямые
A1C1,
A2C2 и
A3C3, пересекающиеся в одной точке.
|
|
Сложность: 4- Классы: 10,11
|
Сфера касается всех рёбер тетраэдра. Соединим точки касания на парах несмежных рёбер.
Докажите, что три полученные прямые пересекаются в одной точке.
Дан некоторый угол и точка A внутри него. Можно ли провести через точку A три прямые (не проходящие через вершину угла) так, чтобы на каждой из сторон угла одна из точек пересечения этих прямых со стороной лежала посередине между двумя другими точками пересечения прямых с этой же стороной?
Окружности S1 и S2 пересекаются в точках M и N. Докажите, что если вершины A и C некоторого прямоугольника ABCD лежат на окружности S1, а вершины B и D – на окружности S2, то точка пересечения диагоналей прямоугольника лежит на прямой MN.
Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 136]