ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Все члены бесконечной арифметической прогрессии – натуральные числа. В каждом члене удалось подчеркнуть одну или несколько подряд идущих цифр так, что в первом члене оказалась подчёркнута цифра 1, во втором – 2,..., в 23-м – цифры 2 и 3 подряд, и так далее (для любого натурального n в n-м члене подчёркнутые цифры образовали число n). Докажите, что разность прогрессии – степень числа 10. Из последовательности a, a + d, a + 2d, a + 3d, ..., являющейся бесконечной арифметической прогрессией, где d не равно 0, тогда и только тогда можно выбрать подпоследовательность, являющуюся бесконечной геометрической прогрессией, когда отношение a/d рационально. Докажите это. Расположить на прямой систему отрезков длины 1, не имеющих общих концов и общих точек так, чтобы бесконечная арифметическая прогрессия с любой разностью и любым начальным членом имела общую точку с некоторым отрезком системы. Дана бесконечно возрастающая арифметическая прогрессия. Первые её несколько членов сложили и сумму объявили первым членом новой последовательности, затем сложили следующие несколько членов исходной прогрессии и сумму объявили вторым членом новой последовательности, и так далее. Могла ли новая последовательность оказаться геометрической прогрессией?
Дана прямоугольная трапеция. Окружность, построенная на меньшей боковой стороне как на диаметре, касается другой боковой стороны и делит её на отрезки, равные a и b. Найдите радиус окружности.
Дана арифметическая прогрессия (с разностью, отличной от нуля), составленная из натуральных чисел, десятичная запись которых не содержит цифры 9.
α, β и γ - углы треугольника ABC. Докажите, что
Докажите, что если
α, β и γ - углы треугольника ABC. Докажите, что
Найдите числа, равные удвоенной сумме своих цифр.
Существуют ли два многоугольника, у которых все вершины общие, но нет ни одной общей стороны? В треугольнике ABC высота AH равна медиане BM.
Найдите угол MBC.
α, β и γ - углы треугольника ABC. Докажите, что
В пространстве расположено n отрезков, никакие три из которых не параллельны одной плоскости. Для любых двух отрезков прямая, соединяющая их середины, перпендикулярна обоим отрезкам. При каком наибольшем n это возможно? Докажите, что выпуклый четырёхгранный угол можно пересечь плоскостью так, чтобы в сечении получился параллелограмм. В пространстве (но не в одной плоскости) расположены шесть различных точек: A, B, C, D, E и F. Известно, что отрезки AB и DE, BC и EF, CD и FA попарно параллельны. Докажите, что эти же отрезки и попарно равны. Основание пирамиды SABCD – параллелограмм ABCD ; M – середина AB , N – середина SC . В каком отношении плоскость BSD делит отрезок MN ? Основание пирамиды Хеопса – квадрат, а её боковые грани – равные равнобедренные треугольники. Боковые рёбра треугольной пирамиды имеют одинаковую длину, а боковые грани — одинаковую площадь. Докажите, что основание этой пирамиды — равнобедренный треугольник.
Основание пирамиды ABCS – равносторонний треугольник ABC со
стороной 4 |
Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 217]
В плоскости дан треугольник A1A2A3 и прямая l вне его, образующая с продолжением сторон треугольника A1A2, A2A3, A3A1 соответственно углы α3, α1, α2. Через точки A1, A2, A3 проводятся прямые, образующие с l соответственно углы π – α1, π – α2, π – α3. Доказать, что эти прямые пересекаются в одной точке. Все углы отсчитываются от прямой l в одном направлении.
Найдите расстояние между прямой, проходящей через точки A(-3;0;1) и B(2;1;-1) , и прямой, проходящей через точки C(-2;2;0) и D(1;3;2) .
В прямоугольном параллелепипеде ABCDA1B1C1D1 известно, что AB = 3 , BC = 2 , CC1 = 4 . На ребре AB взята точка M , причём AM:MB = 1:2 ; K – точка пересечения диагоналей грани CC1D1D . Найдите угол и расстояние между прямыми D1M и B1K .
Основание пирамиды ABCS – равносторонний треугольник ABC со
стороной 4
Даны точки A(-3;0;1) , B(2;1;-1) , C(-2;2;0) и D(1;3;2) . Найдите расстояние между прямыми AB и CD .
Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 217]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке