ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

На окружности радиуса 1 отмечено 100 точек. Доказать, что на этой окружности можно найти такую точку, чтобы сумма расстояний от неё до всех отмеченных точек была больше 100.

Вниз   Решение


Точки A , B , C и D последовательно расположены на окружности. Известно, что градусные меры меньших дуг AB , BC , CD и AD относятся как 1:3:5:6. Найдите углы четырёхугольника ABCD .

ВверхВниз   Решение


За одну операцию можно поменять местами любые две строки или любые два столбца квадратной таблицы. Можно ли за несколько таких операций из закрашенной фигуры, изображённой на рисунке слева, получить закрашенную фигуру, изображённую на рисунке справа?

ВверхВниз   Решение


В трёх ящиках лежат орехи. В первом ящике на 6 кг орехов меньше, чем в двух других вместе. А во втором – на 10 кг меньше, чем в двух других вместе. Сколько орехов в третьем ящике?

ВверхВниз   Решение


На плоскости даны изображение (параллельная проекция) плоского четырёхугольника ABCD и точки M , не лежащей в его плоскости. Постройте изображение прямой, по которой пересекаются плоскости ABM и CDM .

ВверхВниз   Решение


Если разность между наибольшим и наименьшим из n данных вещественных чисел равна d, а сумма модулей всех n(n – 1)/2 попарных разностей этих чисел равна s, то

(n – 1)d £ s £ n2d/4.

Докажите это.

ВверхВниз   Решение


а) Сколькими способами 28 учеников могут выстроиться в очередь в столовую?
б) Как изменится это число, если Петю Иванова и Колю Васина нельзя ставить друг за другом?

ВверхВниз   Решение


Рассматриваются всевозможные прямоугольные параллелепипеды, объём каждого из которых равен , а одна из боковых граней являются квадратом. Найдите среди них параллелепипед с наименьшим периметром основания и вычислите этот периметр.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 127]      



Задача 87126

Темы:   [ Площадь и объем (задачи на экстремум) ]
[ Сфера, вписанная в тетраэдр ]
Сложность: 3
Классы: 8,9

Около шара объёма V описана правильная треугольная пирамида. Каков наименьший возможный объём этой пирамиды?
Прислать комментарий     Решение


Задача 87127

Темы:   [ Площадь и объем (задачи на экстремум) ]
[ Объем круглых тел ]
Сложность: 3
Классы: 8,9

Периметр равнобедренного треугольника равен P . Каковы должны быть его стороны, чтобы объём фигуры, полученной вращением этого треугольника вокруг основания, был наибольшим?
Прислать комментарий     Решение


Задача 87218

Темы:   [ Задачи на максимум и минимум (прочее) ]
[ Прямоугольные параллелепипеды ]
Сложность: 3
Классы: 8,9

Рассматриваются всевозможные прямоугольные параллелепипеды, объём каждого из которых равен 4, а основания являются квадратами. Найдите среди них параллелепипед с наименьшим периметром боковой грани и вычислите этот периметр.
Прислать комментарий     Решение


Задача 87219

Темы:   [ Площадь и объем (задачи на экстремум) ]
[ Прямоугольные параллелепипеды ]
Сложность: 3
Классы: 8,9

Рассматриваются всевозможные прямоугольные параллелепипеды, у которых одна из боковых граней является квадратом, а периметр нижнего основания равен 12. Найдите среди них параллелепипед с наибольшим объёмом и вычислите этот объём.
Прислать комментарий     Решение


Задача 87220

Темы:   [ Площадь и объем (задачи на экстремум) ]
[ Прямоугольные параллелепипеды ]
Сложность: 3
Классы: 8,9

Рассматриваются всевозможные прямоугольные параллелепипеды, объём каждого из которых равен , а одна из боковых граней являются квадратом. Найдите среди них параллелепипед с наименьшим периметром основания и вычислите этот периметр.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 127]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .