ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На плоскости α , проходящей через центр шара радиуса R , задана окружность с центром O1 и радиусом r1 , расположенная внутри шара. Все точки этой окружности соединены прямыми с точкой A , принадлежащей шару и удалённой от плоскости α на расстояние R . Множество отличных от A точек пересечения этих прямых с поверхностью шара является окружностью радиуса r2 , плоскость которой образует угол ϕ с плоскостью α . Найдите расстояние между точками A и O1 .

   Решение

Задачи

Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 257]      



Задача 109021

Темы:   [ Пространственные многоугольники ]
[ Касательные к сферам ]
[ Теоремы Чевы и Менелая в пространстве ]
[ Проектирование помогает решить задачу ]
[ Перпендикуляр и наклонная ]
Сложность: 4+
Классы: 10,11

Около сферы описан пространственный четырёхугольник. Доказать, что точки касания лежат в одной плоскости.
Прислать комментарий     Решение


Задача 116839

Темы:   [ Центр масс ]
[ Сферы (прочее) ]
[ Правильные многогранники (прочее) ]
[ Векторы помогают решить задачу ]
[ Линейные зависимости векторов ]
[ Скалярное произведение ]
Сложность: 4+
Классы: 10,11

а) Внутри сферы находится некоторая точка A. Через A провели три попарно перпендикулярные прямые, которые пересекли сферу в шести точках.
Докажите, что центр масс этих точек не зависит от выбора такой тройки прямых.

б) Внутри сферы находится икосаэдр, его центр A не обязательно совпадает с центром сферы. Лучи, выпущенные из A в вершины икосаэдра, высекают 12 точек на сфере. Икосаэдр повернули так, что его центр остался на месте. Теперь лучи высекают 12 новых точек.
Докажите, что их центр масс совпадает с центром масс старых 12 точек.

Прислать комментарий     Решение

Задача 77916

 [77916]
Темы:   [ Пространственные многоугольники ]
[ Касательные к сферам ]
Сложность: 4+
Классы: 10,11

Около сферы описан пространственный четырёхугольник. Докажите, что четыре точки касания лежат в одной плоскости.

Прислать комментарий     Решение

Задача 87385

Темы:   [ Окружности на сфере ]
[ Касательные к сферам ]
Сложность: 5
Классы: 10,11

На плоскости α , проходящей через центр шара радиуса R , задана окружность с центром O1 и радиусом r1 , расположенная внутри шара. Все точки этой окружности соединены прямыми с точкой A , принадлежащей шару и удалённой от плоскости α на расстояние R . Множество отличных от A точек пересечения этих прямых с поверхностью шара является окружностью радиуса r2 , плоскость которой образует угол ϕ с плоскостью α . Найдите расстояние между точками A и O1 .
Прислать комментарий     Решение


Задача 87386

Темы:   [ Окружности на сфере ]
[ Касательные к сферам ]
[ Конус ]
Сложность: 5
Классы: 10,11

На плоскости α , проходящей через центр шара радиуса R , задана окружность с центром O1 и радиусом r1 , расположенная внутри шара. Все точки этой окружности соединены прямыми с точкой A , принадлежащей шару и удалённой от плоскости α на расстояние R . Множество отличных от A точек пересечения этих прямых с поверхностью шара является окружностью с центром O2 и радиусом r2 . Найдите расстояние от точки O2 до плоскости α , если расстояние между точками A и O1 равно a .
Прислать комментарий     Решение


Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 257]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .