ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Можно ли вписать октаэдр в куб так, чтобы вершины октаэдра находились на рёбрах куба? Докажите, что
cos2( Дано n окружностей: O1, O2,...On, проходящих через одну точку O. Вторые точки пересечения O1 с O2, O2 с O3,..., O3 с O1 обозначим соответственно через A1, A2,..., An. На O1 берем произвольную точку B1. Если B1 не совпадает с A1, то проводим через B1 и A1 прямую до второго пересечения с O2 в точке B2. Если B2 не совпадает с A2, то проводим через B2 и A2 прямую до второго пересечения с O3 в точке B3. Продолжая таким образом, мы получим точку Bn на окружности On. Если On не совпадает с An, то проводим через Bn и An прямую до второго пересечения с O1 в точке Bn + 1. Докажите, что Bn + 1 совпадает с B1.
В треугольнике ABC, площадь которого равна S, проведены биссектриса CE и медиана BD, пересекающиеся в точке O. Найдите площадь четырёхугольника ADOE, зная, что BC = a, AC = b.
В треугольнике ABC из вершины A проведена прямая,
пересекающая сторону BC в точке D, находящейся между точками B и
C, причём
В треугольнике ABC из вершины A проведена прямая,
пересекающая сторону BC в точке D, лежащей между точками B и C,
причём
BD : BC =
В правильной треугольной пирамиде SABC ( S – вершина, SA = 4 ) точка D лежит на ребре SC , CD = 3 , а расстояние от точки A до прямой BD равно 2. Найдите объём пирамиды. Дана сфера радиуса 1 с центром в точке A . Рассматриваются всевозможные правильные тетраэдры MNPQ такие, что точки M и N лежат на прямой BD , а прямая PQ касается сферы в одной из точек отрезка PQ . Найдите наименьшее значение длины ребра рассматриваемых тетраэдров. Окружность с центром в точке пересечения диагоналей KM и LN равнобедренной трапеции KLMN касается меньшего основания LM и боковой стороны MN. Найдите периметр трапеции KLMN, если известно, что её высота равна 36, а радиус окружности равен 11.
Одна из сторон параллелограмма равна 10, а диагонали равны 20 и 24. Найдите косинус острого угла между диагоналями.
Докажите, что дроби 1000/2001 и 1001/2001 имеют равную длину периодов. В углах шахматной доски 3×3 стоят четыре коня: два белых (в соседних углах) и два чёрных.
Из середины каждой стороны остроугольного треугольника опущены перпендикуляры на две другие стороны. Докажите, что площадь ограниченного этими перпендикулярами шестиугольника равна половине площади треугольника.
Даны N прямоугольных треугольников (N > 1). У каждого выбрали по одному катету и нашли сумму их длин, затем нашли сумму длин оставшихся катетов и, наконец, нашли сумму длин всех гипотенуз. Оказалось, что три найденных числа являются длинами сторон некоторого прямоугольного треугольника. Докажите, что все исходные треугольники подобны. На плоскости отметили все вершины правильного n-угольника, а также его центр. Затем нарисовали контур этого n-угольника, и центр соединили со всеми вершинами; в итоге n-угольник разбился на n треугольников. Вася записал в каждую отмеченную точку по числу (среди чисел могут быть равные). В каждый треугольник разбиения он записал в произвольном порядке три числа, стоящих в его вершинах; после этого он стёр числа в отмеченных точках. При каких n по тройкам чисел, записанным в треугольниках, Петя всегда сможет восстановить число в каждой отмеченной точке? Диагонали граней прямоугольного параллелепипеда равны a , b и c . Найдите площадь его полной поверхности. |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 348]
В кубе ABCDA1B1C1D1 , где AA1 , BB1 , CC1 и DD1 – параллельные рёбра, плоскость P проходит через точку D и середины рёбер A1D1 и C1D1 . Найдите расстояние от середины ребра AA1 до плоскости P , если ребро куба равно 2.
Найдите расстояние между серединами двух скрещивающихся рёбер куба, полная поверхность которого равна 36.
Основанием параллелепипеда служит ромб со стороной a , и острым углом 30o . Диагональ одной боковой грани перпендикулярна плоскости основания, а боковое ребро составляет с плоскостью основания угол 60o . Найдите полную поверхность и объём параллелепипеда.
Основанием наклонного параллелепипеда ABCDA1B1C1D1 служит ромб ABCD со стороной a и острым углом 60o . Ребро AA1 также равно a и образует с ребрами AB и AD углы 45o . Найдите объём параллелепипеда.
Диагонали граней прямоугольного параллелепипеда равны a , b и c . Найдите площадь его полной поверхности.
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 348]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке