Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 29 задач
Версия для печати
Убрать все задачи

Вершина A остроугольного треугольника ABC соединена отрезком с центром O описанной окружности. Из вершины A проведена высота AH. Докажите, что  $ \angle$BAH = $ \angle$OAC.

Вниз   Решение


Даны (2n - 1)-угольник  A1...A2n - 1 и точка O. Прямые AkO и  An + k - 1An + k пересекаются в точке Bk. Докажите, что произведение отношений  An + k - 1Bk/An + kBk(k = 1,..., n) равно 1.

ВверхВниз   Решение


Среди 40 кувшинов, с которыми атаман разбойников приехал в гости к Али-Бабе, нашлись два кувшина разной формы и два кувшина разного цвета. Докажите, что среди них найдутся два кувшина одновременно и разной формы и разного цвета.

ВверхВниз   Решение


AA1 и BB1 – высоты остроугольного треугольника ABC. Докажите, что:
  а) треугольник AA1C подобен треугольнику BB1C;
  б) треугольник ABC подобен треугольнику A1B1C.
  в) Найдите коэффициент подобия треугольников A1B1C и ABC, если  ∠C = γ.

ВверхВниз   Решение


Четыре чёрные коровы и три рыжие дают за пять дней столько молока, сколько три чёрные коровы и пять рыжих дают за четыре дня.
У каких коров больше удои, у чёрных или у рыжих?

ВверхВниз   Решение


В чашке, стакане, кувшине и банке находятся молоко, лимонад, квас и вода. Известно, что вода и молоко не в чашке; сосуд с лимонадом стоит между кувшином и сосудом с квасом; в банке не лимонад и не вода; стакан стоит около банки и сосуда с молоком. В какой сосуд налита каждая из жидкостей?

ВверхВниз   Решение


В клетках таблицы 5×5 стоят ненулевые цифры. В каждой строке и в каждом столбце из всех стоящих там цифр составлены десять пятизначных чисел. Может ли оказаться, что из всех этих чисел ровно одно не делится на 3?

ВверхВниз   Решение


Точка выходит из начала координат на прямой и делает a шагов на единицу вправо, b шагов на единицу влево в каком-то порядке, причём  a > b.  Размахом блуждания точки назовём разность между наибольшей и наименьшей координатами точки за всё время блуждания.
  а) Найдите наибольший возможный размах блуждания.
  б) Найдите наименьший возможный размах.
  в) Сколько существует различных последовательностей движения точки, при которых размах блуждания будет наибольшим возможным?

ВверхВниз   Решение


Внутри правильного шестиугольника со стороной 1 расположено 7 точек. Докажите, что среди них найдутся две точки на расстоянии не больше 1.

ВверхВниз   Решение


На плоскости даны 7 прямых, никакие две из которых не параллельны. Доказать, что найдутся две из них, угол между которыми меньше 26°.

ВверхВниз   Решение


В квадрат ABCD со стороной a вписана окружность, которая касается стороны CD в точке E.
Найдите хорду, соединяющую точки, в которых окружность пересекается с прямой AE.

ВверхВниз   Решение


Ванна заполняется холодной водой за 6 минут 40 секунд, горячей – за 8 минут. Кроме того, если из полной ванны вынуть пробку, вода вытечет за 13 минут 20 секунд. Сколько времени понадобится, чтобы наполнить ванну полностью, при условии, что открыты оба крана, но ванна не заткнута пробкой?

ВверхВниз   Решение


Автор: Вялый М.Н.

В школе (где училось больше 5 учеников) подвели итоги учебного года. Выяснилось, что в каждом множестве из пяти и более учеников не менее 80% двоек, полученных этими учениками в течение года, поставлены не более чем 20% процентам учеников из этого множества. Докажите, что по крайней мере три четверти всех двоек, поставленных в школе, получил один ученик.

ВверхВниз   Решение


Две окружности пересекаются в точках M и K. Через M и K проведены прямые AB и CD соответственно, пересекающие первую окружность в точках A и C, вторую в точках B и D. Докажите, что  AC || BD.

ВверхВниз   Решение


Докажите, что равносторонний треугольник нельзя покрыть двумя меньшими равносторонними треугольниками.

ВверхВниз   Решение


Сколькими способами можно переставить числа от 1 до 100 так, чтобы соседние числа отличались не более, чем на 1?

ВверхВниз   Решение


Петин кот перед дождем всегда чихает. Сегодня он чихнул. ``Значит, будет дождь'' - думает Петя. Прав ли он?

ВверхВниз   Решение


В остроугольном треугольнике ABC проведены высоты AA1 и BB1. Докажите, что  A1C·BC = B1C·AC.

ВверхВниз   Решение


В треугольнике ABC найдите точку, из которой сторона AB видна под наименьшим углом.

ВверхВниз   Решение


Из произвольной точки M, лежащей внутри данного угла с вершиной A, опущены перпендикуляры MP и MQ на стороны угла. Из точки A опущен перпендикуляр AK на отрезок PQ. Докажите, что  $ \angle$PAK = $ \angle$MAQ.

ВверхВниз   Решение


На доске 100×100 расставлено 100 ладей, не бьющих друг друга.
Докажите, что в правом верхнем и в левом нижнем квадратах размером 50×50 расставлено равное число ладей.

ВверхВниз   Решение


Две окружности пересекаются в точках A и B. К этим окружностям проведена общая касательная, которая касается окружностей в точках C и D. Докажите, что прямая AB делит отрезок CD пополам.

ВверхВниз   Решение


Пусть AA1 и BB1 – высоты треугольника ABC. Докажите, что треугольники A1B1C и ABC подобны. Чему равен коэффициент подобия?

ВверхВниз   Решение


Докажите, что sin($ \gamma$/2) $ \leq$ c/(a + b).

ВверхВниз   Решение


Докажите, что в любом многоугольнике найдутся две стороны, отношение которых заключено между числами 1/2 и 2.

ВверхВниз   Решение


Докажите, что 1 - sin($ \alpha$/2) $ \geq$ 2 sin($ \beta$/2)sin($ \gamma$/2).

ВверхВниз   Решение


Определение. Пусть функция f (x, y) задана во всех точках плоскости с целыми координатами. Назовем функцию f (x, y) гармонической, если ее значение в каждой точке равно среднему арифметическому значений функции в четырех соседних точках, то есть:
f (x, y)=1/4(f (x+1, y)+ f (x-1, y)+f (x, y+1) + f (x, y-1)).
Пусть f (x, y) и g(x, y) — гармонические функции. Докажите, что для любых a и b функция af (x, y) + bg(x, y) также будет гармонической.

ВверхВниз   Решение


У Сережи и у Лены есть несколько шоколадок, каждая весом не более 100 граммов. Как бы они ни поделили эти шоколадки, у одного из них суммарный вес шоколадок не будет превосходить 100 граммов. Какой наибольший суммарный вес могут иметь все шоколадки?

ВверхВниз   Решение


На острове живут два племени  — аборигены и пришельцы. Известно, что аборигены всегда говорят правду, пришельцы  — всегда лгут. Путешественник нанял туземца-островитянина в проводники. По дороге они встретили какого-то человека. Путешественник попросил проводника узнать, к какому племени принадлежит этот человек. Проводник вернулся и сообщил, что человек назвался аборигеном. Кем был проводник  — аборигеном или пришельцем?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 206]      



Задача 87966

Темы:   [ Математическая логика (прочее) ]
[ Ребусы ]
Сложность: 2-
Классы: 5,6,7

АРФА, БАНТ, ВОЛКОДАВ, ГГГГ, СОУС. Из этих пяти "слов" четыре составляют закономерность, а одно  — лишнее. Попробуйте найти это лишнее слово. Интересно, что задача имеет пять решений, т.е. про каждое слово можно объяснить, почему именно оно лишнее, и какой закономерности подчиняются остальные четыре слова.
Прислать комментарий     Решение


Задача 88150

Тема:   [ Математическая логика (прочее) ]
Сложность: 2-
Классы: 5,6,7

Первый вторник месяца Митя провёл в Смоленске, а первый вторник после первого понедельника  — в Вологде. В следующем месяце Митя первый вторник провёл во Пскове, а первый вторник после первого понедельника  — во Владимире. Сможете ли вы определить, какого числа и какого месяца Митя был в каждом из городов?
Прислать комментарий     Решение


Задача 88266

Тема:   [ Математическая логика (прочее) ]
Сложность: 2-
Классы: 5,6,7

На острове живут два племени  — аборигены и пришельцы. Известно, что аборигены всегда говорят правду, пришельцы  — всегда лгут. Путешественник нанял туземца-островитянина в проводники. По дороге они встретили какого-то человека. Путешественник попросил проводника узнать, к какому племени принадлежит этот человек. Проводник вернулся и сообщил, что человек назвался аборигеном. Кем был проводник  — аборигеном или пришельцем?
Прислать комментарий     Решение


Задача 88271

Тема:   [ Математическая логика (прочее) ]
Сложность: 2-
Классы: 5,6,7

Среди 40 кувшинов, с которыми атаман разбойников приехал в гости к Али-Бабе, нашлись два кувшина разной формы и два кувшина разного цвета. Докажите, что среди них найдутся два кувшина одновременно и разной формы и разного цвета.
Прислать комментарий     Решение


Задача 104072

Тема:   [ Математическая логика (прочее) ]
Сложность: 2-
Классы: 4,5,6,7

В день рождения дяди Федора почтальон Печкин хочет выяснить, сколько тому лет. Шарик говорит, что дяде Федору больше 11 лет, а кот Матроскин утверждает, что больше 10 лет. Сколько лет дяде Федору, если известно, что ровно один из них ошибся? Ответ обоснуйте.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 206]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .