|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Докажите, что система уравнений x1 – x2 = a, x3 – x4 = b, x1 + x2 + x3 + x4 = 1 имеет хотя бы одно положительное решение тогда и только тогда, когда |a| + |b| < 1. Число рёбер многогранника равно 100. |
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 80]
Можно ли расположить бесконечное число равных выпуклых многогранников в слое, ограниченном двумя параллельными плоскостями, так чтобы ни один многогранник нельзя было вынуть из слоя, не сдвигая остальных?
Докажите, что у любого выпуклого многогранника найдутся три ребра, из которых можно составить треугольник.
Число рёбер многогранника равно 100.
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 80] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|