ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В трапеции точка пересечения диагоналей равноудалена от прямых, на которых лежат боковые стороны. Докажите, что трапеция равнобедренная.
В треугольнике ABC биссектриса AH делит медиану BE в отношении BK : KE = 2, а угол ACB равен 30o. Найдите отношение площади треугольника BCE к площади описанного около этого треугольника круга.
С помощью циркуля и линейки постройте треугольник по двум сторонам и медиане, проведённой к третьей. Круг разделен на 6 секторов, в котором по часовой стрелке стоят числа 1,0,1,0,0,0. Можно прибавлять по единице к любым числам, стоящим в двух соседних секторах. Можно ли сделать все числа равными? Дан равнобедренный треугольник ABC, AB = BC. В описанной окружности Ω треугольника ABC проведён диаметр CC'. Прямая, проходящая через точку C' параллельно BC, пересекает отрезки AB и AC в точках M и P соответственно. Докажите, что M – середина отрезка C'P. Внутри прямоугольника ABCD взята точка M. Докажите, что
существует выпуклый четырехугольник с перпендикулярными диагоналями
длины AB и BC, стороны которого равны AM, BM, CM, DM.
В турнире участвуют 2m команд. В первом туре встретились некоторые m пар команд, во втором – другие m пар. Пусть O – центр описанной окружности остроугольного треугольника ABC. Прямая, проходящая через O и параллельная BC, пересекает AB и AC в точках P и Q соответственно. Известно, что сумма расстояний от точки O до сторон AB и AC равна OA. Докажите, что сумма отрезков PB и QC равна PQ. На сторонах AB и BC треугольника ABC отмечены точки D и E соответственно, причём BD + DE = BC и BE + ED = AB. Известно, что четырёхугольник ADEC – вписанный. Докажите, что треугольник ABC – равнобедренный. Около треугольника ABC описана окружность. Продолжение биссектрисы AD треугольника ABC пересекает эту окружность в точке E, причём AE – диаметр данной окружности. Найдите отношение отрезков EC и AB, если косинус угла ABC равен 1/3. Докажите, что для любого неравнобедренного треугольника
Число x таково, что обе суммы S = sin 64x + sin 65x и C = cos 64x + cos 65x – рациональные числа. На окружности отмечено 20 точек. Сколько существует таких троек хорд с концами в этих точках, что каждая хорда пересекает две остальные (возможно, в концах)? Докажите, что при x > 1 выполняется равенство:
2arctg x + arcsin
Окружность ω описана около остроугольного треугольника ABC. На стороне AB выбрана точка D, а на стороне BC – точка E так, что DE || AC. Точки P и Q на меньшей дуге AC окружности ω таковы, что DP || EQ. Лучи QA и PC пересекают прямую DE в точках X и Y соответственно. Докажите, что ∠XBY + ∠PBQ = 180°. Диагонали вписанного четырёхугольника ABCD пересекаются в точке P. Пусть K, L, M, N – середины соответственно сторон AB, BC, CD, AD. В квадратной таблице размером 100×100 некоторые клетки закрашены. Каждая закрашенная клетка является единственной закрашенной клеткой либо в своем столбце, либо в своей строке. Какое наибольшее количество клеток может быть закрашено? От треугольника отрезали три треугольника, причём каждый из трёх разрезов коснулся вписанной в треугольник окружности. Известно, что периметры отрезанных треугольников равны P1, P2, P3. Найдите периметр исходного треугольника. В четырёхугольнике ABCD расположены две непересекающиеся окружности так, что одна из них касается сторон AB, BC и CD, а другая – сторон AB, AD и CD. Прямая MN пересекает стороны AB и CD соответственно в точках M и N и касается обеих окружностей. Найдите расстояние между центрами окружностей, если периметр четырёхугольника MBCN равен 2p, BC = a и разность радиусов окружностей равна r.
Расстояния от концов диаметра окружности до некоторой касательной равны a и b. Найдите радиус окружности.
В треугольнике ABC известно, что
Около треугольника ABC описана окружность. Продолжение биссектрисы BM треугольника ABC пересекает эту окружность в точке N, причём BN – диаметр данной окружности. Найдите отношение отрезков BC и AN, если косинус угла ACB равен 1/5. Имеется набор из 20 гирь, с помощью которых можно взвесить любой целый вес
от 1 до 1997 г (гири кладутся на одну чашку весов, измеряемый вес – на другую). Каков минимально возможный вес самой тяжелой гири такого набора, если:
|
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 147]
По кругу стоят 99 детей, изначально у каждого есть мячик. Ежеминутно каждый ребёнок с мячиком кидает свой мячик одному из двух соседей; при этом, если два мячика попадают к одному ребёнку, то один из этих мячиков теряется безвозвратно. Через какое наименьшее время у детей может остаться только один мячик?
У царя Гиерона есть 11 металлических слитков, неразличимых на вид; царь знает, что их веса (в некотором порядке) равны 1, 2, ..., 11 кг. Ещё у него есть мешок, который порвётся, если в него положить больше 11 кг. Архимед узнал веса всех слитков и хочет доказать Гиерону, что первый слиток имеет
Петя и Вася играют в такую игру. Сначала Петя задумывает некоторый многочлен P(x) с целыми коэффициентами. Далее делается несколько ходов. За ход Вася платит Пете рубль и называет любое целое число a по своему выбору, которое он ещё не называл, а Петя в ответ говорит, сколько решений в целых числах имеет уравнение P(x) = a. Вася выигрывает, как только Петя два раза (не обязательно подряд) назвал одно и то же число. Какого наименьшего числа рублей хватит Васе, чтобы гарантированно выиграть?
В отель ночью приехали $100$ туристов. Они знают, что в отеле есть одноместные номера $1$, $2, \ldots, n$, из которых $k$ на ремонте (но неизвестно какие), а остальные свободны. Туристы могут заранее договориться о своих действиях, после чего по очереди уходят заселяться: каждый проверяет номера в любом порядке, находит первый свободный номер не на ремонте и остаётся там ночевать. Но туристы не хотят беспокоить друг друга: нельзя проверять номер, куда уже кто-то заселился. Для каждого $k$ укажите наименьшее $n$, при котором туристы гарантированно смогут заселиться, не потревожив друг друга.
Доска 2N×2N покрыта неперекрывающимися доминошками 1×2. По доске прошла хромая ладья, побывав на каждой клетке по одному разу (каждый ход хромой ладьи – на клетку, соседнюю по стороне). Назовём ход продольным, если это переход из одной клетки доминошки на другую клетку той же доминошки. Каково а) наибольшее; б) наименьшее возможное число продольных ходов?
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 147]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке