Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 111 112 113 114 115 116 117 >> [Всего задач: 2399]      



Задача 87057

Темы:   [ Достроение тетраэдра до параллелепипеда ]
[ Сфера, описанная около тетраэдра ]
Сложность: 3
Классы: 8,9

Боковые рёбра треугольной пирамиды попарно перпендикулярны и равны a , b и c . Найдите радиус описанной сферы.
Прислать комментарий     Решение


Задача 87058

Темы:   [ Достроение тетраэдра до параллелепипеда ]
[ Равногранный тетраэдр ]
Сложность: 3
Классы: 8,9

Противоположные рёбра тетраэдра попарно равны. Основание тетраэдра – треугольник со сторонами a , b , c . Найдите объём тетраэдра.
Прислать комментарий     Решение


Задача 87063

Темы:   [ Достроение тетраэдра до параллелепипеда ]
[ Равногранный тетраэдр ]
Сложность: 3
Классы: 8,9

Докажите, что все грани тетраэдра равны (равногранный тетраэдр) тогда и только тогда, когда отрезки, соединяющие середины противоположных рёбер, попарно перпендикулярны.
Прислать комментарий     Решение


Задача 87073

Темы:   [ Центр масс ]
[ Правильная пирамида ]
Сложность: 3
Классы: 8,9

Дана правильная треугольная пирамида PABC ( P – вершина) со стороной основания a и боковым ребром b ( b > a ). Сфера лежит над плоскостью основания ABC , касается этой плоскости в точке A и, кроме того, касается бокового ребра PB . Найдите радиус сферы.
Прислать комментарий     Решение


Задача 87075

Темы:   [ Правильный тетраэдр ]
[ Теорема Пифагора в пространстве ]
Сложность: 3
Классы: 8,9

Каждое ребро треугольной пирамиды PABC равно 1; BD – высота треугольника ABC . Равносторонний треугольник BDE лежит в плоскости, образующей угол ϕ с ребром AC , причём точки P и E лежат по одну сторону от плоскости ABC . Найдите расстояние между точками P и E .
Прислать комментарий     Решение


Страница: << 111 112 113 114 115 116 117 >> [Всего задач: 2399]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .