Страница:
<< 13 14 15 16
17 18 19 >> [Всего задач: 1435]
Биссектрисы BD и CE треугольника ABC пересекаются в точке O.
Докажите, что если OD = OE, то либо треугольник равнобедренный, либо его угол при вершине A равен 60°.
|
|
Сложность: 3 Классы: 10,11
|
В треугольнике точку пересечения биссектрис соединили с вершинами, в результате он разбился на 3 меньших треугольника. Один из меньших треугольников
подобен исходному. Найдите его углы.
Три равных треугольника разрезали по разноимённым медианам (см. рис. 1). Можно ли из получившихся шести треугольников сложить один треугольник?
Докажите, что отрезки, соединяющие вершины треугольника с точками касания
противоположных сторон с соответствующими вневписанными окружностями,
пересекаются в одной точке {(точка Нагеля))
Сторона AB треугольника ABC равна c. На стороне AB взята такая точка M, что ∠CMA = φ.
Найдите расстояние между ортоцентрами треугольников AMC и BMC.
Страница:
<< 13 14 15 16
17 18 19 >> [Всего задач: 1435]