Страница:
<< 9 10 11 12 13 14 15 [Всего задач: 74]
|
|
Сложность: 5- Классы: 9,10,11
|
Пусть A' – точка касания вневписанной окружности треугольника ABC со стороной BC. Прямая a проходит через точку A' и параллельна биссектрисе внутреннего угла A. Аналогично строятся прямые b и c. Докажите, что прямые a, b и c пересекаются в одной точке.
|
|
Сложность: 5 Классы: 8,9,10
|
На высотах (но не на их продолжениях) остроугольного
треугольника
ABC взяты точки
A1
,
B1
,
C1
,
отличные от точки пересечения высот
H , причём сумма
площадей треугольников
ABC1
,
BCA1
,
CAB1
равна
площади треугольника
ABC . Докажите, что окружность,
описанная около треугольника
A1
B1
C1
, проходит
через точку
H .
|
|
Сложность: 4- Классы: 10,11
|
В квадрате ABCD на стороне ВС взята точка М, а на стороне CD – точка N так, что ∠MAN = 45°.
Докажите, что центр описанной окружности треугольника AMN принадлежит диагонали АС.
|
|
Сложность: 4+ Классы: 9,10
|
Дан треугольник ABC. Проведены высота AH и медиана CM. Обозначим точку их пересечения через P. Высота, проведённая из вершины B треугольника, пересекается с перпендикуляром, опущенным из точки H на прямую CM, в точке Q. Докажите, что прямые CQ и BP перпендикулярны.
Страница:
<< 9 10 11 12 13 14 15 [Всего задач: 74]