ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 111 112 113 114 115 116 117 >> [Всего задач: 1275]      



Задача 66007

Темы:   [ Вписанные и описанные окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Признаки и свойства параллелограмма ]
[ Хорды и секущие (прочее) ]
[ Вписанные и описанные окружности ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 4-
Классы: 9,10,11

В треугольнике АВС проведены медиана АМ, биссектриса AL и высота AH.
Найдите радиус описанной окружности Ω треугольника АВС, если  AL = t,  AH = h  и L – середина отрезка MH.

Прислать комментарий     Решение

Задача 66017

Темы:   [ Замечательные точки и линии в треугольнике (прочее) ]
[ Вписанный угол, опирающийся на диаметр ]
[ Вспомогательная окружность ]
[ Теорема синусов ]
[ Медиана, проведенная к гипотенузе ]
[ Удвоение медианы ]
[ Признаки и свойства параллелограмма ]
Сложность: 4-
Классы: 9,10,11

Автор: Обухов Б.

В остроугольном треугольнике ABC проведены медиана AM и высота BH. Перпендикуляр, восстановленный в точке M к прямой AM, пересекает луч HB в точке K. Докажите, что если  ∠MAC = 30°,  то  AK = BC.

Прислать комментарий     Решение

Задача 66029

Темы:   [ Вписанные и описанные окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 4-
Классы: 9,10,11

Автор: Кузнецов А.

Окружность ω описана около остроугольного треугольника ABC. На стороне AB выбрана точка D, а на стороне BC – точка E так, что  DE || AC.  Точки P и Q на меньшей дуге AC окружности ω таковы, что  DP || EQ.  Лучи QA и PC пересекают прямую DE в точках X и Y соответственно. Докажите, что  ∠XBY + ∠PBQ = 180°.

Прислать комментарий     Решение

Задача 66588

Темы:   [ Вписанные четырехугольники ]
[ Угол между касательной и хордой ]
[ Средняя линия треугольника ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 4-
Классы: 8,9,10,11

Автор: Доледенок А.В.

Точка $M$ – середина стороны $BC$ треугольника $ABC$. Окружность $\omega$ проходит через точку $A$, касается прямой $BC$ в точке $M$ и пересекает сторону $AB$ в точке $D$, а сторону $AC$ – в точке $E$. Пусть $X$ и $Y$ – середины отрезков $BE$ и $CD$ соответственно. Докажите, что окружность, описанная около треугольника $MXY$, касается $\omega$.
Прислать комментарий     Решение


Задача 66850

Темы:   [ Пересекающиеся окружности ]
[ Угол между касательной и хордой ]
[ Вспомогательные подобные треугольники ]
Сложность: 4-
Классы: 8,9,10,11

Автор: Заславский А.А.

Даны две окружности, пересекающиеся в точках $P$ и $Q$. Произвольная прямая $l$, проходящая через $Q$, повторно пересекает окружности в точках $A$ и $B$. Прямые, касающиеся окружностей в точках $A$ и $B$, пересекаются в точке $C$, а биссектриса угла $CPQ$ пересекает прямую $AB$ в точке $D$. Докажите, что все точки $D$, которые можно так получить, выбирая по-разному прямую $l$, лежат на одной окружности.

Прислать комментарий     Решение

Страница: << 111 112 113 114 115 116 117 >> [Всего задач: 1275]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .