ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 1396]      



Задача 54354

Темы:   [ Отношение площадей подобных треугольников ]
[ Средняя линия треугольника ]
Сложность: 4+
Классы: 8,9

Равнобедренный треугольник ABC ( $ \angle$C = 90o) и треугольник DEF расположены так, что точка D лежит на стороне AB, а точка E — на продолжении стороны AB за точку A. Отрезок KL является средней линией в обоих треугольниках, и площадь четырёхугольника DKLB составляет $ {\frac{5}{8}}$ площади треугольника ABC. Найдите угол DEF.

Прислать комментарий     Решение


Задача 54355

Темы:   [ Отношение площадей подобных треугольников ]
[ Средняя линия треугольника ]
Сложность: 4+
Классы: 8,9

Средняя линия KL равностороннего треугольника ABC является также средней линией треугольника DEF, у которого вершина D лежит на отрезке AC, а вершина F на продолжении стороны AC за точку C. Площадь четырёхугольника DKLC составляет $ {\frac{3}{8}}$ площади треугольника DEF. Найдите угол EDF.

Прислать комментарий     Решение


Задача 54915

Темы:   [ Площадь четырехугольника ]
[ Теорема косинусов ]
[ Описанные четырехугольники ]
[ Вписанные четырехугольники (прочее) ]
[ Четырехугольник: вычисления, метрические соотношения. ]
Сложность: 4+
Классы: 8,9

Стороны четырёхугольника равны a, b, c и d. Известно, что в этот четырёхугольник можно вписать окружность и около него можно описать окружность. Докажите, что его площадь равна $ \sqrt{abcd}$.

Прислать комментарий     Решение


Задача 54996

Темы:   [ Отношение площадей подобных треугольников ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 4+
Классы: 8,9

Из точки P, расположенной внутри остроугольного треугольника ABC, опущены перпендикуляры на стороны AB, BC и CA. Перпендикуляры соответственно равны l, m, n. Вычислите площадь треугольника ABC, если углы BAC, ABC и ACB соответственно равны $ \alpha$, $ \beta$ и $ \gamma$.

Прислать комментарий     Решение


Задача 55104

Темы:   [ Площадь четырехугольника ]
[ Средняя линия треугольника ]
Сложность: 4+
Классы: 8,9

Через середину каждой диагонали выпуклого четырёхугольника проведена прямая, параллельная другой диагонали; точка пересечения этих прямых соединена с серединами сторон четырёхугольника. Докажите, что четырёхугольник разбивается таким образом на четыре равновеликие части.

Прислать комментарий     Решение


Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 1396]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .