Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Филимонов В.П.

Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Докажите, что abc = 4prR и  ab + bc + ca = r2 + p2 + 4rR.

Вниз   Решение


Около окружности описан четырёхугольник. Его диагонали пересекаются в центре этой окружности. Докажите, что этот четырёхугольник — ромб.

ВверхВниз   Решение


Двое по очереди кладут пятаки на круглый стол, причем так, чтобы они не накладывались друг на друга. Проигрывает тот, кто не может сделать ход.

ВверхВниз   Решение


Найдите наименьшую величину выражения   + + ... + .

ВверхВниз   Решение


Автор: Фольклор

Среди зрителей кинофестиваля было поровну мужчин и женщин. Всем зрителям понравилось одинаковое количество фильмов. Каждый фильм понравился восьми зрителям. Докажите, что не менее 3/7 фильмов обладают следующим свойством: среди зрителей, которым фильм понравился, не менее двух мужчин.

ВверхВниз   Решение


На столе лежат две стопки монет: в одной из них 30 монет, а в другой - 20. За ход разрешается взять любое количество монет из одной стопки. Проигрывает тот, кто не сможет сделать ход. Кто из игроков выигрывает при правильной игре?

ВверхВниз   Решение


В остроугольном треугольнике ABC точки O, I – центры описанной и вписанной окружностей, P – произвольная точка на отрезке OI, точки PA, PB и PC – вторые точки пересечения прямых PA, PB и PC с окружностью ABC. Докажите. что биссектрисы углов BPAC, CPBA и APCB пересекаются в одной точке, лежащей на прямой OI.

ВверхВниз   Решение


Докажите, что  $ {\frac{1}{ab}}$ + $ {\frac{1}{bc}}$ + $ {\frac{1}{ca}}$ = $ {\frac{1}{2Rr}}$.

ВверхВниз   Решение


На доске написаны числа 1 и 2. Каждый день научный консультант Выбегалло заменяет два написанных числа на их среднее арифметическое и среднее гармоническое.
а) Однажды одним из написанных чисел (каким — неизвестно) оказалось 941664/665857. Каким в этот момент было другое число?
б) Будет ли когда-нибудь написано число 35/24?

ВверхВниз   Решение


Выбежав после уроков на двор, каждый школьник кинул снежком ровно в одного другого школьника.
Докажите, что всех учащихся можно разбить на три команды так, что члены одной команды друг в друга снежками не кидали.

ВверхВниз   Решение


Дан остроугольный треугольник ABC. Точки M и N – середины сторон AB и BC соответственно, точка H – основание высоты, опущенной из вершины B. Описанные окружности треугольников AHN и CHM пересекаются в точке P   (P ≠ H).  Докажите, что прямая PH проходит через середину отрезка MN.

ВверхВниз   Решение


Дан треугольник ABC, в котором  AB > BC.  Касательная к его описанной окружности в точке B пересекает прямую AC в точке P. Точка D симметрична точке B относительно точки P, а точка E симметрична точке C относительно прямой BP. Докажите, что четырёхугольник ABED – вписанный.

Вверх   Решение

Все задачи автора

Страница: 1 2 >> [Всего задач: 7]      



Задача 65821

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Площадь треугольника (через высоту и основание) ]
[ Отношения площадей (прочее) ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 9,10,11

На сторонах прямоугольного треугольника ABC построены во внешнюю сторону квадраты с центрами D, E, F.
Докажите, что отношение  SDEF : SABC   а) больше 1;   б) не меньше 2.

Прислать комментарий     Решение

Задача 111348

Темы:   [ Углы между биссектрисами ]
[ Четыре точки, лежащие на одной окружности ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9,10,11

Через центр O вписанной в треугольник ABC окружности проведена прямая, перпендикулярная прямой AO и пересекающая прямую BC в точке M.
Из точки O на прямую AM опущен перпендикуляр OD. Докажите, что точки A, B, C и D лежат на одной окружности.

Прислать комментарий     Решение

Задача 115514

Темы:   [ Вспомогательные подобные треугольники ]
[ Две пары подобных треугольников ]
[ Средняя линия трапеции ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Четырехугольники (прочее) ]
Сложность: 3+
Классы: 8,9

Внутри выпуклого четырёхугольника ABCD взята такая точка P, что  ∠PBA = ∠PCD = 90°.  Точка M – середина стороны AD, причём  BM = CM.
Докажите, что  ∠PAB = ∠PDC.

Прислать комментарий     Решение

Задача 111816

Темы:   [ Угол между касательной и хордой ]
[ Вспомогательные подобные треугольники ]
[ Вписанные четырехугольники (прочее) ]
[ Свойства симметрий и осей симметрии ]
Сложность: 4-
Классы: 8,9

Дан треугольник ABC, в котором  AB > BC.  Касательная к его описанной окружности в точке B пересекает прямую AC в точке P. Точка D симметрична точке B относительно точки P, а точка E симметрична точке C относительно прямой BP. Докажите, что четырёхугольник ABED – вписанный.

Прислать комментарий     Решение

Задача 111847

Темы:   [ Три точки, лежащие на одной прямой ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Медиана, проведенная к гипотенузе ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 4
Классы: 9,10

Дан остроугольный треугольник ABC. Точки M и N – середины сторон AB и BC соответственно, точка H – основание высоты, опущенной из вершины B. Описанные окружности треугольников AHN и CHM пересекаются в точке P   (P ≠ H).  Докажите, что прямая PH проходит через середину отрезка MN.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .