ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() Григорий Александрович Гальперин - российский и американский математик, автор популярных книг "Московские математические олимпиады" и "Математические бильярды". |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Даны 8 гирек весом 1,2,..,8 граммов, но неизвестно, какая из них сколько весит. Барон Мюнхгаузен утверждает, что помнит, какая из гирек сколько весит, и в доказательство своей правоты готов провести одно взвешивание, в результате которого будет однозначно установлен вес хотя бы одной из гирь. Не обманывает ли он? Из имеющихся последовательностей {bn} и {cn} (возможно, {bn} совпадает с {cn}) разрешается получать последовательности
{bn + cn}, б) в) Внутри окружности с центром O отмечены точки A и B так, что OA = OB. Разрежьте рамку (см. рис.) на 16 равных частей. В шести корзинах лежат груши, сливы и яблоки. Число слив в каждой корзине равно числу яблок в остальных корзинах вместе взятых, а число яблок в каждой корзине равно числу груш в остальных корзинах вместе взятых. Докажите, что общее число фруктов делится на 31.
Для каких α существует функция f : На стороне BC треугольника ABC выбрана произвольная точка D . В треугольники ABD и ACD вписаны окружности с центрами K и L соответственно. Докажите, что описанные окружности треугольников BKD и CLD вторично пересекаются на фиксированной окружности. Точка D на стороне BC треугольника ABC такова, что радиусы вписанных окружностей треугольников ABD и ACD равны. Докажите, что радиусы окружностей, вневписанных в треугольники ABD и ACD , касающихся соответственно отрезков BD и CD , также равны. На плоскости взято конечное число красных и синих прямых, среди которых нет параллельных, так, что через каждую точку пересечения одноцветных прямых проходит прямая другого цвета. Докажите, что все прямые проходят через одну точку. В некоторой группе из 12 человек среди каждых девяти найдутся пять попарно знакомых. Докажите, что в этой группе найдутся шесть попарно знакомых. Назовём компанию k-неразбиваемой, если при любом разбиении её на k групп в одной из групп найдутся два знакомых человека. Дана 3-неразбиваемая компания, в которой нет четырёх попарно знакомых человек. Докажите, что её можно разделить на две компании, одна из которых 2-неразбиваемая, а другая – 1-неразбиваемая.
На координатной плоскости дан выпуклый пятиугольник
ABCDE с вершинами в целых точках. Докажите, что внутри или на границе
пятиугольника A1B1C1D1E1 (см. рис.) есть хотя бы одна целая точка.
На плоскости рассматривается конечное множество равных, параллельно расположенных квадратов, причем среди любых k+1 квадратов найдутся два пересекающихся. Докажите, что это множество можно разбить не более чем на 2k-1 непустых подмножеств так, что в каждом подмножестве все квадраты будут иметь общую точку. Еще Архимед знал, что шар занимает ровно |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 82]
Через вершины A и B треугольника ABC проведены две прямые, которые разбивают его на четыре фигуры (три треугольника и один четырёхугольник). Известно, что три из этих фигур имеют одинаковую площадь. Докажите, что одна из этих фигур – четырёхугольник.
Решить в натуральных числах уравнение:
2002 год — год-палиндром, то есть одинаково читается справа налево и слева направо. Предыдущий год-палиндром был 11 лет назад (1991). Какое максимальное число годов-непалиндромов может идти подряд (между 1000 и 9999 годами)?
Еще Архимед знал, что шар занимает ровно
На доске написаны две суммы:
1 + 22 + 333 + 4444 + 55555 + 666666 +7777777 + 88888888 + 999999999 Определите, какая из них больше (или они равны).
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 82]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке