Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Плоткин А.И.

Фильтр
Сложность с по   Класс с по  
Выбрано 17 задач
Версия для печати
Убрать все задачи

Внутри прямого угла с вершиной $O$ расположен треугольник $OAB$ с прямым углом $A$. Высота треугольника $OAB$, опущенная на гипотенузу, продолжена за точку $A$ до пересечения со стороной угла $O$ в точке $M$. Расстояния от точек $M$ и $B$ до второй стороны угла $O$ равны $2$ и $1$ соответственно. Найдите $OA$.

Вниз   Решение


Автор: Иванов А.

В треугольнике ABC проведена биссектриса AD. Точки M и N являются проекциями вершин B и C на AD. Окружность с диаметром MN пересекает BC в точках X и Y. Докажите, что  ∠BAX = ∠CAY.

ВверхВниз   Решение


В данный сегмент вписываются всевозможные пары касающихся окружностей (рис.1). Для каждой пары окружностей через точку касания проводится касающаяся их прямая. Докажите, что все эти прямые проходят через одну точку.

ВверхВниз   Решение


Автор: Иванов В.

  а) Вершины правильного 10-угольника закрашены чёрной и белой краской через одну. Двое играют в следующую игру. Каждый по очереди проводит отрезок, соединяющий вершины одинакового цвета. Эти отрезки не должны иметь общих точек (даже концов) с проведенными ранее. Побеждает тот, кто сделал последний ход. Кто выигрывает при правильной игре: начинающий игру или его партнер?
  б) Тот же вопрос для 12-угольника.

ВверхВниз   Решение


N точек плоскости, никакие три из которых не лежат на одной прямой, попарно соединили отрезками (каждую с каждой). Часть отрезков покрасили красным, остальные – синим. Все красные отрезки образовали замкнутую несамопересекающуюся ломаную, и все синие отрезки – тоже. Найдите все N, при которых это могло получиться.

ВверхВниз   Решение


Можно ли покрасить четыре вершины куба в красный цвет и четыре другие – в синий так, чтобы плоскость, проходящая через любые три точки одного цвета, содержала точку другого цвета?

ВверхВниз   Решение


Выпуклой фигурой F нельзя накрыть полукруг радиуса R. Может ли случиться, что двумя фигурами, равными F, можно накрыть круг радиуса R?

ВверхВниз   Решение


Автор: Струков С.

В остроугольном треугольнике ABC проведены высоты BD и CE. Из вершин B и C на прямую ED опущены перпендикуляры BF и CG. Докажите, что EF = DG.

ВверхВниз   Решение


Автор: Яковлев Б.

Дан равнобедренный треугольник $ABC$, $AB=AC$, $P$ – середина меньшей дуги $AB$ окружности $ABC$, $Q$ – середина отрезка $AC$. Окружность с центром в $O$, описанная около $APQ$, вторично пересекает $AB$ в точке $K$. Докажите, что прямые $PO$ и $KQ$ пересекаются на биссектрисе угла $ABC$.

ВверхВниз   Решение


Автор: Семенов Е.

В одном пакетике два пирожка с капустой, в другом два с вишней, в третьем – один с капустой и один с вишней. Выглядят и весят пирожки одинаково, так что неизвестно, какой с чем. Внуку в школу нужно дать один пирожок. Бабушка хочет дать пирожок с вишней, но она сама запуталась в своих пирожках и определить начинку может, только надломив пирожок. Надломленный пирожок внук не хочет, он хочет целый.
  а) Покажите, что бабушка может действовать так, что вероятность дать внуку целый пирожок с вишней будет равна ⅔.
  б) Существует ли стратегия, при которой вероятность дать внуку целый пирожок с вишней выше чем ⅔?

ВверхВниз   Решение


Автор: Манукян С.

Докажите, что при любом натуральном n  

ВверхВниз   Решение


Окружность, построенная на высоте AD прямоугольного треугольника ABC как на диаметре, пересекает катет AB в точке K, а катет AC — в точке M. Отрезок KM пересекает высоту AD в точке L. Известно, что отрезки AK, AL и AM составляют геометрическую прогрессию (т.е. $ {\frac{AK}{AL}}$ = $ {\frac{AL}{AM}}$). Найдите острые углы треугольника ABC.

ВверхВниз   Решение


Автор: Соколов А.

Дана окружность ω с центром $O$ и две её различные точки $A$ и $C$. Для любой другой точки $P$ на ω отметим середины $X$ и $Y$ отрезков $AP$ и $CP$ и построим точку $H$ пересечения высот треугольника $OXY$. Докажите, что положение точки $H$ не зависит от выбора точки $P$.

ВверхВниз   Решение


Четырехугольник ABCD, диагонали которого взаимно перпендикулярны, вписан в окружность с центром O.
Докажите, что ломаная AOC делит его на две равновеликие части.

ВверхВниз   Решение


Найдите наименьшее натуральное число, десятичная запись квадрата которого оканчивается на 2016.

ВверхВниз   Решение


На сторонах $AB$, $BC$, $CA$ треугольника $ABC$ выбраны точки $P$, $Q$, $R$ соответственно так, что $AP=PR$, $CQ=QR$. Точка $H$ – ортоцентр треугольника $PQR$, точка $O$ – центр описанной окружности треугольника $ABC$. Докажите, что $OH \parallel AC$.

ВверхВниз   Решение


Для всякого ли натурального n можно расставить первые n натуральных чисел в таком порядке, чтобы ни для каких двух чисел их полусумма не равнялась ни одному из чисел, расположенных между ними?

Вверх   Решение

Все задачи автора

Страница: 1 [Всего задач: 2]      



Задача 97903

Темы:   [ Характеристические свойства и рекуррентные соотношения ]
[ Теорема о промежуточном значении. Связность ]
Сложность: 4-
Классы: 10,11

Функция F задана на всей вещественной оси, причём для любого x имеет место равенство:  F(x + 1)F(x) + F(x + 1) + 1 = 0.
Докажите, что функция F не может быть непрерывной.

Прислать комментарий     Решение

Задача 73806

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Четность и нечетность ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 7,8,9

Для всякого ли натурального n можно расставить первые n натуральных чисел в таком порядке, чтобы ни для каких двух чисел их полусумма не равнялась ни одному из чисел, расположенных между ними?

Прислать комментарий     Решение

Страница: 1 [Всего задач: 2]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .