ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() Назар Хангельдыевич Агаханов (р. 1954) - доцент кафедры высшей математики МФТИ, кандидат физико-математических наук. C 1974 года член жюри Всесоюзной (в 1992 году - Межреспубликанской, c 1993 года - Всероссийской олимпиады школьников по математике). Лидер национальной команды России на международной математической олимпиаде. Председатель Консультативного совета международной математической олимпиады. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Угол, образованный лучами y = x и y = 2x при x ≥ 0, высекает на параболе y = x² + px + q две дуги. Эти дуги спроектированы на ось Ox. Докажите, что проекция левой дуги на 1 короче проекции правой. Три человека A, B, C пересчитали кучу шариков четырёх цветов (см. таблицу). Стороны правильного шестиугольника раскрашены через одну в красный и синий цвета. Докажите, что сумма расстояний от точки, лежащей внутри шестиугольника, до прямых, содержащих красные стороны, равна сумме расстояний от этой точки до прямых, содержащих синие стороны. Доказать, что число вида n4 + 2n2 + 3 не может быть простым. Докажите, что точка Лемуана треугольника ABC
с прямым углом C является серединой высоты CH.
Найдите все функции f : Если повернуть квадрат вокруг его центра на 45°, то стороны повёрнутого квадрата разобьют каждую сторону первоначального отрезка на три отрезка, длины которых относятся как a : b : a (эти отношения легко вычислить). Для произвольного выпуклого четырёхугольника сделаем аналогичное построение: разобьём каждую его сторону в тех же отношениях a : b : a и проведём прямую через каждые две точки деления, соседние с вершиной (лежащие на сходящейся к ней стороне). Докажите, что площадь четырёхугольника, ограниченного четырьмя построенными прямыми, равна площади исходного четырёхугольника. На столе лежат пять часов со стрелками. Разрешается любые несколько из них перевести вперёд. Для каждых часов время, на которое при этом их перевели, назовём временем перевода. Требуется все часы установить так, чтобы они показывали одинаковое время. За какое наименьшее суммарное время перевода это можно гарантированно сделать? Существуют ли два квадратных трёхчлена ax² + bx + c и (a + 1)x² + (b + 1)x + (c + 1) с целыми коэффициентами, каждый из которых имеет по два целых корня? Алик, Боря и Вася собирали грибы. Боря собрал грибов на 20% больше, чем Алик, но на 20% меньше, чем Вася. Квадратные трёхчлены f(x) и g(x) таковы, что
f '(x)g'(x) ≥ |f(x)| + |g(x)| при всех действительных x. |
Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 105]
В остроугольном треугольнике расстояние от середины каждой стороны до противоположной вершины равно сумме расстояний от неё до сторон треугольника. Докажите, что этот треугольник – равносторонний.
В клетчатом квадрате 101×101 каждая клетка внутреннего квадрата 99×99 покрашена в один из десяти цветов (клетки, примыкающие к границе квадрата, не покрашены). Может ли оказаться, что в каждом квадрате 3×3 в цвет центральной клетки покрашена еще ровно одна клетка?
Квадратные трёхчлены f(x) и g(x) таковы, что
f '(x)g'(x) ≥ |f(x)| + |g(x)| при всех действительных x.
У двух треугольников равны наибольшие стороны и равны наименьшие углы. Строится новый треугольник со сторонами, равными суммам соответствующих сторон данных треугольников (складываются наибольшие стороны двух треугольников, средние по длине стороны и наименьшие стороны). Докажите, что площадь нового треугольника не меньше удвоенной суммы площадей исходных.
На доске написали 100 дробей, у которых в числителях стоят все числа от 1 до 100 по одному разу и в знаменателях стоят все числа от 1 до 100 по одному разу. Оказалось, что сумма этих дробей есть несократимая дробь со знаменателем 2. Докажите, что можно поменять местами числители двух дробей так, чтобы сумма стала несократимой дробью с нечётным знаменателем.
Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 105]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке