ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Паутина имеет вид клетчатой сетки 100×100 узлов (другими словами, это сетка 99×99 клеток). В каком-то её углу сидит паук, а в некоторых 100 узлах к паутине приклеились мухи. За ход паук может переместиться в любой соседний с ним узел. Может ли паук гарантированно съесть всех мух, затратив не более Графики квадратного трёхчлена и его производной разбивают координатную плоскость на четыре части. Сколько корней имеет этот квадратный трёхчлен? Решите уравнение x3+(log25+log32+log53)x=(log23+log35+log52)x2+1. В равнобедренной трапеции проведена диагональ. По контуру каждого из получившихся двух треугольников ползёт свой жук. Скорости движения жуков постоянны и одинаковы. Жуки не меняют направления обхода своих контуров, и по диагонали трапеции они ползут в разных направлениях. Докажите, что при любых начальных положениях жуков они когда-нибудь встретятся. Четыре окружности радиуса R пересекаются по три в точках M и N, и по две в точках A, B, C и D. Докажите что ABCD — параллелограмм.
Остроугольный треугольник ABC вписан в окружность Ω. Пусть H и M – точка пересечения высот и середина стороны BC соответственно. Прямая HM пересекает окружность ω, описанную около треугольника BHC, в точке N≠H. На дуге BC окружности ω, не содержащей точку H, нашлась точка P такая, что ∠HMP=90∘. Отрезок PM пересекает Ω в точке Q. Точки B′ и C′ симметричны точке A относительно точек B и C соответственно. Докажите, что описанные окружности треугольников AB′C′ и PQN касаются. Многоугольник, описанный около окружности радиуса r,
разрезан на треугольники (произвольным образом). Докажите, что сумма
радиусов вписанных окружностей этих треугольников больше r.
Рассмотрим на клетчатой плоскости такие ломаные с началом в точке (0, 0) и вершинами в целых точках, что каждое очередное звено идёт по сторонам клеток либо вверх, либо вправо. Каждой такой ломаной соответствует червяк – фигура, состоящая из клеток плоскости, имеющих хотя бы одну общую точку с этой ломаной. Докажите, что червяков, которые можно разбить на двуклеточные доминошки ровно n>2 различными способами, столько же, сколько натуральных чисел, меньших n и взаимно простых с n. (Червяки разные, если состоят из разных наборов клеток.) Решите систему уравнений: Выпуклый четырехугольник ABCD таков, что ∠BAD=2∠BCD и AB=AD. Пусть P – такая точка, что ABCP – параллелограмм. Докажите, что CP=DP. Около треугольника ABC описали окружность. A1 – точка пересечения с нею прямой, параллельной BC и проходящей через A. Точки B1 и C1 определяются аналогично. Из точек A1, B1, C1 опустили перпендикуляры на BC, CA, AB соответственно. Докажите, что эти три перпендикуляра пересекаются в одной точке. Дана равнобокая трапеция ABCD (AB=CD). На описанной около неё окружности выбирается точка P так, что отрезок CP пересекает основание AD в точке Q. Пусть L – середина QD. Докажите, что длина диагонали трапеции не превосходит суммы расстояний от середин её боковых сторон до любой точки прямой PL. Даны две окружности ω1 и ω2, пересекающиеся в точке A, и прямая a. Пусть BC – произвольная хорда окружности ω2, параллельная a, а E и F – вторые точки пересечения прямых AB и AC с ω1. Найдите геометрическое место точек пересечения прямых BC и EF. Вписанная и вневписанная сферы треугольной пирамиды ABCD касаются её грани BCD в различных точках X и Y. |
Страница: 1 2 >> [Всего задач: 9]
Вписанная и вневписанная сферы треугольной пирамиды ABCD касаются её грани BCD в различных точках X и Y.
Вначале на плоскости были отмечены три различные точки. Каждую минуту выбирались некоторые три из отмеченных точек – обозначим их A, B и C, после чего на плоскости отмечалась точка D, симметричная A относительно серединного перпендикуляра к BC. Через сутки оказалось, что среди отмеченных точек нашлись три различные точки, лежащие на одной прямой. Докажите, что три исходных точки также лежали на одной прямой.
На окружности, описанной около прямоугольника ABCD, выбрана точка K. Оказалось, что прямая CK пересекает отрезок AD в такой точке M, что
Точка M – середина стороны AC остроугольного треугольника ABC, в котором AB > BC. Касательные к описанной окружности Ω треугольника ABC, проведённые в точках A и C, пересекаются в точке P. Отрезки BP и AC пересекаются в точке S. Пусть AD – высота треугольника BP. Описанная окружность ω треугольника CSD второй раз пересекает окружность Ω в точке K. Докажите, что ∠CKM = 90°.
На окружности отмечено 2N точек (N – натуральное число). Известно, что через любую точку внутри окружности проходит не более двух хорд с концами в отмеченных точках. Назовем паросочетанием такой набор из N хорд с концами в отмеченных точках, что каждая отмеченная точка является концом ровно одной из этих хорд. Назовём паросочетание чётным, если количество точек, в которых пересекаются его хорды, чётно, и нечётным иначе. Найдите разность между количеством чётных и нечётных паросочетаний.
Страница: 1 2 >> [Всего задач: 9]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке