Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Мурашкин М.В.

Фильтр
Сложность с по   Класс с по  
Выбрано 16 задач
Версия для печати
Убрать все задачи

Дан треугольник ABC. Две прямые, симметричные прямой AC относительно прямых AB и BC соответственно, пересекаются в точке K.
Докажите, что прямая BK проходит через центр O описанной около треугольника ABC окружности.

Вниз   Решение


Автор: Жуков Г.

По кругу записывают 2015 натуральных чисел так, чтобы каждые два соседних числа различались на их наибольший общий делитель.
Найдите наибольшее натуральное N, на которое гарантированно будет делиться произведение этих 2015 чисел.

ВверхВниз   Решение


Корабль в тумане пытается пристать к берегу. Экипаж не знает, в какой стороне находится берег, но видит маяк, находящийся на маленьком острове в $10$ км от берега, и понимает, что расстояние от корабля до маяка не превышает $10$ км (точное расстояние до маяка неизвестно). Маяк окружен рифами, поэтому приближаться к нему нельзя. Может ли корабль достичь берега, проплыв не больше $75$ км? (Береговая линия – прямая, траектория до начала движения вычерчивается на дисплее компьютера, после чего автопилот ведет корабль по ней.)

ВверхВниз   Решение


Автор: Жуков Г.

Дан вписанный четырёхугольник ABCD. Лучи AB и DC пересекаются в точке K. Оказалось, что точки B, D, а также середины M и N отрезков AC и KC лежат на одной окружности. Какие значения может принимать угол ADC?

ВверхВниз   Решение


Три велосипедиста ездят по кольцевой дороге радиуса 1 км против часовой стрелки с постоянными различными скоростями.
Верно ли, что, если они будут кататься достаточно долго, то найдётся момент, когда расстояние между каждыми двумя из них будет больше 1 км?

ВверхВниз   Решение


Дан выпуклый многогранник и точка $K$, не принадлежащая ему. Для каждой точки $M$ многогранника строится шар с диаметром $MK$. Докажите, что в многограннике существует единственная точка, принадлежащая всем таким шарам.

ВверхВниз   Решение


Автор: Анджанс А.

ВверхВниз   Решение


Окружности Ω1 и Ω2 пересекаются в точках A и B. Через точку B проведена прямая, вторично пересекающая Ω1 и Ω2 в точках K и M соответственно. Прямая l1 касается Ω1 в точке Q и параллельна прямой AM. R – вторая точка пересечения прямой QA с Ω2. Докажите, что
  а) касательная l2, проведённая к Ω2 в точке R, параллельна AK.;
  б) прямые l1, l2 и K имеют общую точку.

ВверхВниз   Решение


  На плоскости даны три прямые l1, l2, l3, образующие треугольник, и отмечена точка O – центр описанной окружности этого треугольника. Для произвольной точки X плоскости обозначим через Xi точку, симметричную точке X относительно прямой li,  i = 1, 2, 3.
  а) Докажите, что для произвольной точки M прямые, соединяющие середины отрезков O1O2 и M1M2, O2O3 и M2M3, O3O1 и M3M1, пересекаются в одной точке.
  б) Где может лежать эта точка пересечения?

ВверхВниз   Решение


Автор: Анджанс А.

В выпуклом четырёхугольнике прямая, проходящая через середины двух противоположных сторон, образует равные углы с диагоналями четырёхугольника. Докажите, что диагонали равны.

ВверхВниз   Решение


Автор: Жуков Г.

Дан многочлен двадцатой степени с целыми коэффициентами. На плоскости отметили все точки с целыми координатами, у которых ординаты не меньше 0 и не больше 10. Какое наибольшее число отмеченных точек может лежать на графике этого многочлена?

ВверхВниз   Решение


Автор: Жуков Г.

Дана бесконечно возрастающая арифметическая прогрессия. Первые её несколько членов сложили и сумму объявили первым членом новой последовательности, затем сложили следующие несколько членов исходной прогрессии и сумму объявили вторым членом новой последовательности, и так далее. Могла ли новая последовательность оказаться геометрической прогрессией?

ВверхВниз   Решение


Какое максимальное число осей симметрии, может иметь объединение k отрезков на плоскости?

ВверхВниз   Решение


Автор: Храмцов Д.

На клетчатый лист бумаги размера 100×100 положили несколько попарно неперекрывающихся картонных равнобедренных прямоугольных треугольничков с катетом 1; каждый треугольничек занимает ровно половину одной из клеток. Оказалось, что каждый единичный отрезок сетки (включая граничные) накрыт ровно одним катетом треугольничка. Найдите наибольшее возможное число клеток, не содержащих ни одного треугольничка.

ВверхВниз   Решение


Последовательность чисел  a1, a2, ...  задана условиями  a1 = 1,  a2 = 143  и     при всех  n ≥ 2.
Докажите, что все члены последовательности – целые числа.

ВверхВниз   Решение


Ненулевые числа a, b, c таковы, что  ax² + bx + c > cx  при любом x. Докажите, что  cx² – bx + a > cx – b  при любом x.

Вверх   Решение

Все задачи автора

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 33]      



Задача 115361

Темы:   [ Исследование квадратного трехчлена ]
[ Квадратные неравенства и системы неравенств ]
Сложность: 3+
Классы: 8,9,10

Ненулевые числа a, b, c таковы, что  ax² + bx + c > cx  при любом x. Докажите, что  cx² – bx + a > cx – b  при любом x.

Прислать комментарий     Решение

Задача 116589

Темы:   [ Числовые последовательности (прочее) ]
[ Линейные рекуррентные соотношения ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 8,9,10

Последовательность чисел  a1, a2, ...  задана условиями  a1 = 1,  a2 = 143  и     при всех  n ≥ 2.
Докажите, что все члены последовательности – целые числа.

Прислать комментарий     Решение

Задача 111804

Темы:   [ Разложение в произведение транспозиций и циклов ]
[ Индукция (прочее) ]
[ Принцип крайнего (прочее) ]
[ Процессы и операции ]
Сложность: 4-
Классы: 8,9,10

В очереди к стоматологу стоят 30 ребят: мальчиков и девочек. Часы на стене показывают 8:00. Как только начинается новая минута, каждый мальчик, за которым стоит девочка, пропускает её вперед. Докажите, что перестановки в очереди закончатся до 8:30, когда откроется дверь кабинета.

Прислать комментарий     Решение

Задача 64526

Темы:   [ Разрезания на параллелограммы ]
[ Системы точек и отрезков (прочее) ]
[ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 4-
Классы: 9,10,11

Прямоугольник разбили на несколько меньших прямоугольников. Могло ли оказаться, что для каждой пары полученных прямоугольников отрезок, соединяющий их центры, пересекает еще какой-нибудь прямоугольник?

Прислать комментарий     Решение

Задача 64613

Темы:   [ Многочлены (прочее) ]
[ Производная (прочее) ]
[ Средние величины ]
[ Теорема Виета ]
[ Неравенство Коши ]
Сложность: 4-
Классы: 10,11

Многочлен степени  $n > 1$  имеет $n$ разных корней $х_1$, $х_2$, ..., $х_n$. Его производная имеет корни $y_1$, $y_2$, ..., $y_{n-1}$. Докажите неравенство $$\frac{x_1^2 + \dots + x_n^2}{n} > \frac{y_1^2 + \dots + y_{n-1}^2}{n-1}.$$
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 33]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .