ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Доска 100×100 разбита на 10000 единичных квадратиков. Один из них вырезали, так что образовалась дырка. Можно ли оставшуюся часть доски покрыть равнобедренными прямоугольными треугольниками с гипотенузой длины 2 так, чтобы их гипотенузы шли по сторонам квадратиков, а катеты – по диагоналям и чтобы треугольники не налегали друг на друга и не свисали с доски? В пространстве даны несколько точек и несколько плоскостей. Известно, что через любые две точки проходят ровно две плоскости, а каждая плоскость содержит не меньше четырех точек. Верно ли, что все точки лежат на одной прямой? Квадрат 9×9 разбит на 81 единичную клетку. Некоторые клетки закрашены,
причём расстояние между центрами каждых двух закрашенных клеток больше 2.
Лестница имеет 100 ступенек. Коля хочет спуститься по лестнице, при этом он двигается начиная сверху прыжками вниз и вверх по очереди. Прыжки бывают трёх типов – на шесть ступенек (через пять на шестую), на семь и на восемь. Два раза на одну ступеньку Коля не становится. Сможет ли он спуститься? Даны две концентрические окружности $\Omega$ и $\omega$. Хорда $AD$ окружности $\Omega$ касается $\omega$. Внутри меньшего сегмента $AD$ круга с границей $\Omega$ взята произвольная точка $P$. Касательные из $P$ к окружности $\omega$ пересекают большую дугу AD окружности $\Omega$ в точках $B$ и $C$. Отрезки $BD$ и $AC$ пересекаются в точке $Q$. Докажите, что отрезок $PQ$ делит отрезок $AD$ на две равные части. На боковых сторонах $AB$ и $BC$ равнобедренного треугольника $ABC$ отмечены точки $D$ и $E$ так, что $\angle BED = 3\angle BDE$. Точка $D'$ симметрична точке $D$ относительно прямой $AC$. Докажите, что прямая $D'E$ проходит через точку пересечения биссектрис треугольника $ABC$. На поверхности сферической планеты расположены четыре материка, отделённые друг от друга океаном. Назовем точку океана особой, если для нее найдутся не менее трёх ближайших (находящихся от нее на равных расстояниях) точек суши, причём все на разных материках. Какое наибольшее число особых точек может быть на этой планете? Двое бросают монету: один бросил ее 10 раз, другой – 11 раз. В клетках квадратной таблицы n × n, где n > 1, требуется расставить различные целые числа от 1 до n2 так, чтобы каждые два последовательных числа оказались в соседних по стороне клетках, а каждые два числа, дающие одинаковые остатки при делении на n, – в разных строках и в разных столбцах. При каких n это возможно? В королевстве восемь городов. Король хочет построить такую систему дорог, чтобы из каждого города можно было попасть в любой другой, минуя не более одного промежуточного города, и чтобы из каждого города выходило не более k дорог. При каких k это возможно? В отель ночью приехали $100$ туристов. Они знают, что в отеле есть одноместные номера $1$, $2, \ldots, n$, из которых $k$ на ремонте (но неизвестно какие), а остальные свободны. Туристы могут заранее договориться о своих действиях, после чего по очереди уходят заселяться: каждый проверяет номера в любом порядке, находит первый свободный номер не на ремонте и остаётся там ночевать. Но туристы не хотят беспокоить друг друга: нельзя проверять номер, куда уже кто-то заселился. Для каждого $k$ укажите наименьшее $n$, при котором туристы гарантированно смогут заселиться, не потревожив друг друга. Из листа клетчатой бумаги размером 29×29 клеточек вырезали 99 квадратиков
2×2 (режут по линиям). Дан описанный четырёхугольник $ABCD$. Докажите, что точка пересечения диагоналей, центр вписанной окружности треугольника $ABC$ и центр вневписанной окружности треугольника $CDA$, касающейся стороны $AC$ лежат на одной прямой. Кузнечик прыгает по числовой прямой, на которой отмечены точки $-a$ и $b$. Известно, что $a$ и $b$ — положительные числа, а их отношение иррационально. Если кузнечик находится в точке, которая ближе к $-a$, то он прыгает вправо на расстояние, равное $a$. Если же он находится в середине отрезка $[-a;b]$ или в точке, которая ближе к $b$, то он прыгает влево на расстояние, равное $b$. Докажите, что независимо от своего начального положения кузнечик в некоторый момент окажется от точки 0 на расстоянии, меньшем $10^{-6}$. На окружности $\omega$ зафиксирована точка $A$. Хорды $BC$ окружности $\omega$ выбираются так, что проходят через фиксированную точку $P$. Докажите, что окружности 9 точек треугольников $ABC$ касаются фиксированной окружности, не зависящей от выбора $BC$. |
Страница: << 1 2 3 4 5 >> [Всего задач: 22]
Даны две концентрические окружности $\Omega$ и $\omega$. Хорда $AD$ окружности $\Omega$ касается $\omega$. Внутри меньшего сегмента $AD$ круга с границей $\Omega$ взята произвольная точка $P$. Касательные из $P$ к окружности $\omega$ пересекают большую дугу AD окружности $\Omega$ в точках $B$ и $C$. Отрезки $BD$ и $AC$ пересекаются в точке $Q$. Докажите, что отрезок $PQ$ делит отрезок $AD$ на две равные части.
В треугольнике $ABC$ выбрана точка $P$. Лучи с началом в точке $P$, пересекающие под прямым углом стороны $BC$, $AC$, $AB$, пересекают описанную окружность в точках $A_1$, $B_1$, $C_1$ соответственно. Оказалось, что прямые $AA_1$, $BB_1$ и $CC_1$ пересекаются в одной точке $Q$. Докажите, что все такие прямые $PQ$ пересекаются в одной точке.
Пусть $O$, $I$ – центры описанной и вписанной окружностей треугольника $ABC$; $R$, $r$ – их радиусы; $D$ – точка касания вписанной окружности со стороной $BC$; $N$ – произвольная точка на отрезке $ID$. Перпендикуляр к $ID$ в точке $N$ пересекает описанную окружность $ABC$ в точках $X$ и $Y$. Пусть $O_1$ – центр описанной окружности $XIY$. Найдите произведение $OO_1\cdot IN$.
На окружности $\omega$ зафиксирована точка $A$. Хорды $BC$ окружности $\omega$ выбираются так, что проходят через фиксированную точку $P$. Докажите, что окружности 9 точек треугольников $ABC$ касаются фиксированной окружности, не зависящей от выбора $BC$.
По окружности $\Omega$ движется точка $P$. На окружности $\Omega$ зафиксированы точки $A$ и $B$. Точка $C$ – произвольная точка внутри круга с границей $\Omega$. Общие внешние касательные к окружностям, описанным около треугольников $APC$ и $BCP$, пересекаются в точке $Q$. Докажите, что все точки $Q$ лежат на двух фиксированных прямых.
Страница: << 1 2 3 4 5 >> [Всего задач: 22]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке