Страница:
<< 196 197 198 199
200 201 202 >> [Всего задач: 1957]
|
|
Сложность: 4- Классы: 8,9,10
|
В магазине в ряд висят 21 белая и 21 фиолетовая рубашка. Найдите такое минимальное k, что при любом изначальном порядке рубашек можно снять k белых и k фиолетовых рубашек так, чтобы оставшиеся белые рубашки висели подряд и оставшиеся фиолетовые рубашки тоже висели подряд.
|
|
Сложность: 4- Классы: 8,9,10
|
Дано n палочек. Из любых трёх можно сложить тупоугольный треугольник. Каково наибольшее возможное значение n?
|
|
Сложность: 4- Классы: 10,11
|
На сторонах AD и CD параллелограмма ABCD с центром O отмечены такие точки P и Q соответственно, что ∠AOP = ∠COQ = ∠ABC.
а) Докажите, что ∠ABP = ∠CBQ.
б) Докажите, что прямые AQ и CP пересекаются на описанной окружности треугольника ABC.
|
|
Сложность: 4- Классы: 10,11
|
Саша обнаружил, что на калькуляторе осталось ровно n исправных кнопок с цифрами. Оказалось, что любое натуральное число от 1 до 99999999 можно либо набрать, используя лишь исправные кнопки, либо получить как сумму двух натуральных чисел, каждое из которых можно набрать, используя лишь исправные кнопки. Каково наименьшее n, при котором это возможно?
|
|
Сложность: 4- Классы: 10,11
|
Существует ли такой квадратный трёхчлен f(x) = ax² + bx + c с целыми коэффициентами и a, не кратным 2014, что все числа f(1), f(2), ..., f(2014) имеют различные остатки при делении на 2014?
Страница:
<< 196 197 198 199
200 201 202 >> [Всего задач: 1957]